Множество однородных призм | ||
---|---|---|
![]() Шестиугольная призма | ||
Тип | Однородный многогранник[en] | |
Свойства |
вершинно транзитивный выпуклый многогранник |
|
Комбинаторика | ||
Элементы |
|
|
Грани |
Всего - 2+n n {4} |
|
Конфигурация вершины | 4.4.n | |
Развёртка | ||
![]() |
||
Двойственный многогранник | Бипирамида | |
Классификация | ||
Символ Шлефли | {n}×{} or t{2, n} | |
Диаграмма Дынкина |
![]() ![]() ![]() ![]() ![]() |
|
Группа симметрии | Dnh[en], [n,2], (*n22), порядок 4n | |
![]() |
При́зма (лат. prisma от др.-греч. πρίσμα «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Эти параллелограммы называются боковыми гранями призмы, а оставшиеся два многоугольника называются её основаниями.
Многоугольник лежащий в основании определяет название призмы: треугольник — треугольная призма, четырёхугольник — четырёхугольная; пятиугольник — пятиугольная (пентапризма) и т.д.
Призма является частным случаем цилиндра в общем смысле (некругового).
Прямые призмы с правильными основаниями и одинаковыми длинами рёбер образуют одну из двух бесконечных последовательностей полуправильных многогранников, другую последовательность образуют антипризмы
Усечённая призма — это призма с непараллельными основаниями[2].
Название | Определение | Обозначения на чертеже | Чертеж |
Основания | Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных друг другу плоскостях. | , | ![]() |
Боковые грани | Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. | , , , , | |
Боковая поверхность | Объединение боковых граней. | ||
Полная поверхность | Объединение оснований и боковой поверхности. | ||
Боковые ребра | Общие стороны боковых граней. | , , , , | |
Высота | Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям. | ||
Диагональ | Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. | ||
Диагональная плоскость | Плоскость, проходящая через боковое ребро призмы и диагональ основания. | ||
Диагональное сечение | Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат. | ||
Перпендикулярное (ортогональное) сечение | Пересечение призмы и плоскости, перпендикулярной её боковому ребру. |
![]() Треугольная призма |
![]() 4-угольная призма |
![]() 5-угольная призма |
![]() 6-угольная призма |
![]() 7-угольная призма |
![]() 8-угольная призма |
Группой симметрии прямой n-угольной призмы с правильным основанием является группа Dnh порядка 4n, за исключением куба, который имеет группу симметрии Oh[en] порядка 48, содержащую три версии D4h в качестве подгрупп. Группой вращений[en] является Dn порядка 2n, за исключением случая куба, для которого группой вращений является группа O[en] порядка 24, имеющая три версии D4 в качестве подгрупп.
Группа симметрии Dnh включает центральную симметрию в том и только в том случае, когда n чётно.
Призматический многогранник — это обобщение призмы в пространствах размерности 4 и выше. n-мерный призматический многогранник конструируется из двух (n − 1)-мерных многогранников, перенесённых в следующую размерность.
Элементы призматического n-мерного многогранника удваиваются из элементов (n − 1)-мерного многогранника, затем создаются новые элементы следующего уровня.
Возьмём n-мерный многогранник с элементами (i-мерная грань, i = 0, ..., n). Призматический ( )-мерный многогранник будет иметь элементов размерности i (при , ).
По размерностям:
Правильный n-многогранник, представленный символом Шлефли {p, q, ..., t}, может образовать однородный призматический многогранник размерности (n + 1), представленный прямым произведением двух символов Шлефли: {p, q, ..., t}×{}.
По размерностям:
Призматические многогранники более высоких размерностей также существуют как прямые произведения двух любых многогранников. Размерность призматического многогранника равна произведению размерностей элементов произведения. Первый пример такого произведения существует в 4-мерном пространстве и называется дуопризмами, которые получаются произведением двух многоугольников. Правильные дуопризмы представляются символом {p}×{q}.
Многоугольник | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Мозаика | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||||
Конфигурация | 3.4.4 | 4.4.4 | 5.4.4 | 6.4.4 | 7.4.4 | 8.4.4 | 9.4.4 | 10.4.4 | 11.4.4 | 12.4.4 | 17.4.4 | ∞.4.4 |
Скрученная призма — это невыпуклый призматический многогранник, полученный из однородной q-угольной путём деления боковых граней диагональю и вращения верхнего основания, обычно на угол радиан ( градусов), в направлении, при котором стороны становятся вогнутыми[3][4].
Скрученная призма не может быть разбита на тетраэдры без введения новых вершин. Простейший пример с треугольными основаниями называется многогранником Шёнхардта.
Скрученная призма топологически идентична антипризме, но имеет половину симметрий: Dn, [n,2]+, порядка 2n. Эту призму можно рассматривать как выпуклую антипризму, у которой удалены тетраэдры между парами треугольников.
Треугольная | Четырёхугольные | 12-угольная | |
---|---|---|---|
![]() Многогранник Шёнхардта |
![]() Скрученная квадратная антипризма |
![]() Квадратная антипризма |
![]() Скрученная двенадцатиугольная антипризма |
Многоугольник | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Мозаика | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||||
Конфигурация | 3.4.4 | 4.4.4 | 5.4.4 | 6.4.4 | 7.4.4 | 8.4.4 | 9.4.4 | 10.4.4 | 11.4.4 | 12.4.4 | 17.4.4 | ∞.4.4 |
n | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Название | {2} || t{2} | {3} || t{3} | {4} || t{4} | {5} || t{5} | {6} || t{6} |
Купол | ![]() Диагональный купол |
![]() Трёхскатный купол |
![]() Четырёхскатный купол |
![]() Пятискатный купол[en] |
![]() Шестискатный купол (плоский) |
Связанные однородные многогранники |
Треугольная призма![]() ![]() ![]() ![]() ![]() |
Кубооктаэдр![]() ![]() ![]() ![]() ![]() |
Ромбокубо- октаэдр ![]() ![]() ![]() ![]() ![]() |
Ромбоикосо- додекаэдр ![]() ![]() ![]() ![]() ![]() |
Ромботри- шестиугольная мозаика[en] ![]() ![]() ![]() ![]() ![]() |
Призмы топологически являются частью последовательности однородных усечённых многогранников с конфигурациями вершин (3.2n.2n) и [n,3].
Варианты симметрии *n32 усечённых мозаик: 3.2n.2n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия *n32 [n,3] |
Сферическая | Евклидова[en]* | Компактная гиперболич. | Параком- пактная |
Некомпактная гиперболич. | ||||||
*232 [2,3] |
*332 [3,3] |
*432 [4,3] |
*532 [5,3] |
*632 [6,3] |
*732 [7,3] |
*832 [8,3]... |
*∞32 [∞,3] |
[12i,3] | [9i,3] | [6i,3] | |
Усечённые фигуры |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфигурация[en]* | 3.4.4 | 3.6.6 | 3.8.8 | 3.10.10 | 3.12.12[en] | 3.14.14[en] | 3.16.16[en] | 3.∞.∞[en] | 3.24i.24i | 3.18i.18i | 3.12i.12i |
Разделённые фигуры |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
Конфигурация[en]* | V3.4.4 | V3.6.6 | V3.8.8 | V3.10.10 | V3.12.12[en] | V3.14.14[en] | V3.16.16 | V3.∞.∞ |
Призмы топологически являются частью последовательности скошенных многогранников с вершинными фигурами (3.4.n.4) и мозаик на гиперболической плоскости. Эти вершинно транзитивные фигуры имеют (*n32) зеркальную симметрию[en].
Варианты симметрии *n42 расширенных мозаик: 3.4.n.4 | ||||||||
---|---|---|---|---|---|---|---|---|
Симметрия *n32 [n,3] |
Сферическая | Евклидова | Компактная гиперболическая |
Паракомпактная | ||||
*232 [2,3] |
*332 [3,3] |
*432 [4,3] |
*532 [5,3] |
*632 [6,3] |
*732 [7,3] |
*832 [8,3]... |
*∞32 [∞,3] | |
Фигура | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфигурация | 3.4.2.4 | 3.4.3.4 | 3.4.4.4 | 3.4.5.4 | 3.4.6.4[en] | 3.4.7.4[en] | 3.4.8.4[en] | 3.4.∞.4[en] |
Существует 4 однородных соединения треугольных призм:
Существует 9 однородных сот, включающих ячейки в виде треугольных призм:
Треугольная призма является первым многогранником в ряду полуправильных многогранников[en]. Каждый последующий однородный многогранник[en] содержит в качестве вершинной фигуры предыдущий многогранник. Торольд Госсет[en] идентифицировал эту серию в 1900 как содержащую все фасеты правильных многомерных многогранников, все симплексы и ортоплексы (правильные треугольники и квадраты для случая треугольных призм). В нотации Коксетера треугольная призма задаётся символом −121.
k21[en] в пространстве размерности n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Пространство | Конечное | Евклидово | Гиперболическое | ||||||||
En[en] | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Группа Коксетера |
E₃=A₂A₁ | E₄=A₄ | E₅=D₅ | E₆ | E₇[en] | E₈ | E₉ = Ẽ₈ = E₈+ | E₁₀ = T₈ = E₈++ | |||
Диаграмма Коксетера |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |||
Симметрия[en] | [3−1,2,1] | [30,2,1] | [31,2,1] | [32,2,1] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Порядок | 12 | 120 | 192 | 51 840 | 2 903 040 | 696 729 600 | ∞ | ||||
Граф | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
- | - | |||
Обозначение | −121 | 021 | 121 | 221[en] | 321[en] | 421[en] | 521[en] | 621[en] |
Треугольная призма служит ячейкой во множестве четырёхмерных однородных 4-мерных многогранников[en], включая:
![]() |
призма в Викисловаре |
---|---|
![]() |
Призма (геометрия) на Викискладе |
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .