Параллелогра́мм (др.-греч.παραλληλόγραμμον от παράλληλος — параллельный и γραμμή — линия) — это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник, квадрат и ромб.
Свойства
Противоположные стороны параллелограмма равны, а диагонали в точке пересечения делятся пополам.Противоположные углы параллелограмма равны, а сумма соседних равна 180°.
Противолежащие стороны параллелограмма равны.
Противолежащие углы параллелограмма равны.
Сумма углов, прилежащих к одной стороне, равна 180° (по свойству параллельных прямых).
Диагонали параллелограмма пересекаются, и точка пересечения делит их пополам:
.
Точка пересечения диагоналей является центром симметрии параллелограмма.
Параллелограмм диагональю делится на два равных треугольника.
Средние линии параллелограмма пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.
Тождество параллелограмма: сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, и — длины диагоналей; тогда
Тождество параллелограмма есть простое следствие формулы Эйлера для произвольного четырехугольника: учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей. У параллелограмма противоположные стороны равны, а расстояние между серединами диагоналей равно нулю.
Аффинное преобразование всегда переводит параллелограмм в параллелограмм. Для любого параллелограмма существует аффинное преобразование, которое отображает его в квадрат.
Признаки параллелограмма
Четырёхугольник ABCD является параллелограммом, если выполняется одно из следующих условий (в этом случае выполняются и все остальные):
У четырёхугольника без самопересечений две противоположные стороны одновременно равны и параллельны: .
Все противоположные углы попарно равны: .
У четырёхугольника без самопересечений все противоположные стороны попарно равны: .
Все противоположные стороны попарно параллельны: .
Диагонали делятся в точке их пересечения пополам: .
Сумма соседних углов равна 180 градусов: .
Сумма расстояний между серединами противоположных сторон выпуклого четырехугольника равна его полупериметру.
Сумма квадратов диагоналей равна сумме квадратов сторон выпуклого четырёхугольника: .
Площадь параллелограмма равна произведению его основания на высоту:
, где — сторона, — высота, проведенная к этой стороне.
Площадь параллелограмма равна произведению его сторон на синус угла между ними:
где и — стороны, а — угол между сторонами и .
Также площадь параллелограмма может быть выражена через стороны и длину любой из диагоналей по формуле Герона как сумма площадей двух равных примыкающих треугольников:
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии