Ромботриаконтаэдр | ||
---|---|---|
![]() (вращающаяся модель, 3D-модель) | ||
Тип | каталаново тело | |
Свойства | изоэдральный, изотоксальный, зоноэдр | |
Комбинаторика | ||
Элементы |
|
|
Грани | ромбы | |
Конфигурация вершины |
20 вида 43 12 вида 45 |
|
Конфигурация грани | V3.5.3.5 | |
Развёртка | ||
![]() |
||
Двойственный многогранник | икосододекаэдр | |
Классификация | ||
Обозначения | jD | |
Диаграмма Дынкина |
![]() ![]() ![]() ![]() ![]() |
|
Группа симметрии | Ih, H3, [5,3], (*532) | |
Группа вращения | I, [5,3]+, (532) | |
Количественные данные | ||
Двугранный угол | 144° | |
![]() |
Ромботриаконтáэдр( от греч. τριάκοντα (греч. τριάντα) — «тридцать» и εδρον — «грань») — выпуклый тридцатигранник с одинаковыми ромбическими гранями. Относится к каталановым телам. Является двойственным по отношению к икосододекаэдру и зоноэдром.
Отношение длинной диагонали к короткой диагонали каждой его грани равно золотому сечению, поэтому грани ромботриаконтаэдра называются «золотыми ромбами».
У ромботриаконтаэдра 32 вершины, 12 из них находятся при острых углах 5 ромбов, остальные 20 — при тупых углах 3 ромбов. Острые углы ромбов примерно равны 63,43°, а тупые 116,57° соответственно. В ромботриаконтаэдр можно вписать икосаэдр, додекаэдр, 5 октаэдров, 5 кубов и 10 тетраэдров, так чтобы все их вершины совпадали с некоторыми из его вершин. У него 358 833 097 звёздчатых форм. Форму ромботриаконтаэдра имеет магнитный конструктор-головоломка «The Ball of Whacks», состоящий из 30 содержащих магниты пластмассовых пирамидальных деталей, ромбические основания которых в собранном виде головоломки являются гранями ромботриаконтаэдра, а вершины пирамид совпадают в его центре.
![]() |
Это заготовка статьи по геометрии. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .