Эта статья или раздел нуждается в переработке. |
Линк вершины многогранника или вершинная фигура — многогранник на единицу меньшей размерности, который получается в сечении исходного многогранника плоскостью, срезающей одну вершину. В частности линк вершины содержит информацию о порядке следования граней многогранника вокруг одной вершины.
Если взять некоторую вершину многогранника, отметить точку где-нибудь на каждом из прилегающих рёбер, нарисовать отрезки на гранях, соединяя полученные точки, в результате получится полный цикл (многоугольник) вокруг вершины. Этот многоугольник и является линком вершины.
Формальное определение может варьироваться очень широко в зависимости от обстоятельств. Например, Коксетер (1948, 1954) менял своё определение как ему удобно для текущего обсуждения. Большинство нижеприведённых определений линка подходит одинаково хорошо как для бесконечных мозаик на плоскости, так и для пространственных мозаик из многогранников.
Если срезать вершину многогранника, пересекая каждое из рёбер, смежных вершине, поверхность среза будет являться линком. Это, пожалуй, наиболее общепринятый подход и наиболее понятный. Разные авторы делают срез в разных местах. Веннинджер[1][2] перерезает каждое ребро на единичном расстоянии от вершины, так же как это делает и Коксетер (1948). Для однородных многогранников построение Дормана Люка пересекает каждое смежное ребро в середине. Другие авторы делают сечение через вершину на другой стороне каждого ребра[3][4].
Кромвель[5] делает сферическое сечение с центром в вершине. Поверхность сечения или линк, тогда, является сферическим многоугольником на этой сфере.
Многие комбинаторные и вычислительные подходы (например, Скиллинг[6]) рассматривают линк как упорядоченное (или частично упорядоченное) множество точек всех соседних (соединённых ребром) вершин для данной вершины.
В теории абстрактных многогранников линка заданной вершины V состоит из всех элементов, инцидентных вершине — вершин, рёбер, граней и т. д.
Это множество элементов известно как вершинная звезда.
Линка вершины n-многогранника — это (n−1)-многогранник. Например, линком вершины 3-мерного многогранника является многоугольник, а линком для 4-мерного многогранника является 3-мерный многогранник.
Линки наиболее полезны для однородных многогранников[en], поскольку все вершины имеют один линк.
Для невыпуклых многогранников линк может быть тоже невыпуклым. Однородные многогранники, например, могут иметь грани в виде звёздчатых многоугольников, звёздчатыми могут быть и линки.
Грань двойственного многогранника двойственные линку соответствующей вершины.
Если многогранник правильный, его можно описать символом Шлефли, символы граней, и линков можно извлечь из этой записи.
В общем случае правильный многогранник с символом Шлефли {a,b,c,...,y,z} имеет грани (наибольшей размерности) {a,b,c,...,y}, а в качестве линка будет {b,c,...,y,z}.
Поскольку двойственный многогранник правильного многогранника также является правильным и представляется обратными индексами в символе Шлефли, легко понять, что двойственная фигура к линку вершины является ячейкой двойственного многогранника. Для правильных многогранников этот факт является частным случаем построения Дормана Люка.
Линком вершины усечённых кубических сот[en] является неоднородная квадратная пирамида. Один октаэдр и четыре усечённых куба, расположенных около каждой вершины, образуют пространственную мозаику.
Линк вершины: Неоднородная квадратная пирамида | ![]() Диаграмма Шлегеля |
![]() Перспектива |
Образуется из квадратного основания октаэдра | ![]() (3.3.3.3) | |
и четырёх равнобедренных треугольных сторон усечённого куба | ![]() (3.8.8) |
С линком связано другое понятие — линк ребра. Линк ребра является (n−2)-многогранником, представляющим расстановку граней размерности n−1 вокруг данного ребра (прилегающих к данному ребру). Линк ребра является линком вершины линка вершины[7]. Линки ребер полезны для выражения связей между элементами правильных и однородных многогранников.
Правильные и однородные многогранники, полученные в результате отражений с одним активным зеркалом, имеют единственный тип линка ребра, но в общем случае однородный многогранник может иметь столько линков, сколько зеркал активны при построении, поскольку каждое активное зеркало создаёт ребро в фундаментальной области.
Правильные многогранники (и соты) имеют единственный линк ребра, которая является также правильным. Для правильного многогранника {p,q,r,s,...,z} линк ребра будет {r,s,...,z}.
В четырёхмерном пространстве линк ребра многогранника или трёхмерных сот является многоугольником, представляющим расположение граней вокруг ребра. Например, линк ребра правильных кубических сот[en]* {4,3,4} является квадрат, а для правильного четырёхмерного многогранника {p,q,r} линк ребра будет {r}.
Менее очевидно, что у усечённых кубических сот[en] t0,1{4,3,4} в качестве линк вершины выступает квадратная пирамида. Здесь присутствует два типа линков ребер. Один — квадратный линк ребра при вершине пирамиды, она соответствует четырём усечённым кубам вокруг ребра. Второй лик — треугольники при основании пирамиды. Они представляют расположение двух усечённых кубов и октаэдра вокруг других ребер.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .