WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней[en]* в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.

Формально, мы говорим, что для любых двух вершин существует симметрия политопа, отображающая первую вершину изометрично во вторую. Другой путь сказать то же самое — что группа автоморфизмов политопа транзитивна на его вершинах, или что вершины лежат внутри одной орбиты симметрии.

Все вершины конечной n-мерной изогональной фигуры существуют на (n-1)-сфере.

Термин изогональный давно использовался в контексте многогранников. Термин вершинно транзитивный является синонимом, позаимствованным из современных идей групп симметрии и теории графов.

Четырёхскатный повернутый купол[en]не являющийся изогональным — демонстрирует, что утверждение «все вершины выглядят одинаковыми» не столь ограничительно, как определение, приведённое выше, которое вовлекает группу изометрий, сохраняющую многогранник или мозаику.

Изогональные многоугольники и бесконечноугольники

Изогональные бесконечноугольники
Изогональные пространственные бесконечноугольники[en]

Все правильные многоугольники, бесконечноугольники и правильные звёздчатые многоугольники являются изогональными. Двойственная фигура для изогонального многоугольника — изотоксальный многоугольник[en].

Некоторые многоугольники с чётным числом сторон и бесконечноугольники, с попеременными двумя длинами сторон, например прямоугольник, являются изогональными.

Все плоские изогональные 2n-угольники имеют диэдральную симметрию (Dn, n=2,3,...) с осями симметрии через середины сторон.

D2 D3 D4 D7

Изогональные прямоугольники и скрещ1нные прямоугольники[en] имеют одно и то же расположение вершин[en]

Изогональная гексаграмма с 6 идентичными вершинами и двумя длинами рёбер [1]

Изогональный выпуклый восьмиугольник с синими и красными радиальными осями симметрии

Изогональный «звёздчатый» четырнадцатиугольник с одним типом вершин и двумя типами рёбер [2].

Изогональные 3-мерные многогранники и 2D-мозаики

Изогональные мозаики
Деформированная квадратная мозаика
Деформированная
усечённая квадратная мозаика

Изогональный многогранник (3D) и 2D-мозаика имеют единственный вид вершин. Изогональный многогранник с правильными гранями является также однородным многогранником[en] и может быть представлен нотацией вершинной конфигурации[en]*, путём последовательного перечисления граней вокруг каждой вершины. Геометрически деформированные варианты однородных многогранников и мозаик могут также быть заданы вершинной конфигурацией.

Изогональные (3D) многогранники
D3d, порядок 12 Th, порядок 24 Oh[en], порядок 48
4.4.6 3.4.4.4 4.6.8 3.8.8

Деформированная шестиугольная призма

Деформированный ромбокубооктаэдр

Слегка усечённый кубооктаэдр

Сверхусечённый куб

Изогональные 3D-многогранники и 2D-мозаики можно классифицировать далее

Размерность N(> 3) — изогональные многогранники и мозаики

Определения изогональных фигур могут быть распространены на многогранники более высоких размерностей и соты. В общем случае все однородные многогранники[en] являются изогональными, например, однородные 4-мерные многогранники[en] и выпуклые однородные соты[en].

Двойственный многогранник для изогонального многогранника является изотопическим[en], т.е. транзитивен по фасетам.

k-изогональные и k-однородные фигуры

Многогранник или соты называются k-изогональными, если его вершины образуют k классов транзитивности. Более ограничивающий термин, k-однородный определяется как k-изогональная фигура, состоящая только из правильных многоугольников. Они могут быть представлены визуально различными цветами однородной раскраски[en].


Этот усечённый робмододекаэдр[en] является 2-изогональным, поскольку он содержит два класса транзитивности вершин. Этот многогранник состоит из квадратов и сплюснутых шестиугольников.

Эта полуправильная мозаика является также 2-изогональной2-однородной). Эта мозаика состоит из правильных треугольных и правильных шестиугольных граней.

2-изогональная 9/4 эннеаграмма

См. также

Примечания

  1. Coxeter, 1931, p. 509—521.
  2. Grünbaum, 1996, p. Figure 1. Parameter t=2.0.

Литература

  • Grünbaum, Branko The Lighter Side of Mathematics: Proceedings of the Eugène Strens Memorial Conference on Recreational Mathematics and its History / Ed. by Richard K. Guy, Robert E. Woodrow. — The Mathematical Association of America, 1996. Figure 1. Parameter t=2.0
  • Coxeter H. S. M.  The densities of the regular polytopes, Part II // Math. Proc. Cambridge Philos. Soc. — 1931. — P. 509—521.
  • Cromwell, Peter R.  Polyhedra. — Cambridge University Press, 1997. — P. 369 Transitivity. ISBN 0-521-55432-2.
  • Grünbaum B., Shephard G. C.  Tilings and Patterns. — W. H. Freeman and Company, 1987. ISBN 0-7167-1193-1. (p. 33 k-isogonal tiling; p. 65 k-uniform tilings)

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии