Гиробифастигиум | ||
---|---|---|
![]() Гиробифастигиум | ||
Тип | Многогранник Джонсона | |
Свойства | выпуклый, ячейка сот | |
Комбинаторика | ||
Элементы |
|
|
Грани |
4 треугольника 4 квадрата |
|
Развёртка | ||
![]() |
||
Двойственный многогранник | - | |
Классификация | ||
Группа симметрии | D2d |
В геометрии гиробифастигиум или двускатный повёрнутый бикупол[1] является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º [2]. Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство[3][4].
Многогранник Джонсона является одним из 92 строго выпуклых многогранников, имеющих правильные грани, но не являющихся однородными многогранниками[en] (то есть не являющихся платоновыми телами, архимедовыми телами, призмами, или антипризмами). Тела названы именем Нормана Джонсона[en], впервые перечислившего их в 1966 [5].
Название гиробифастигиум происходит от латинского слова fastigium, означающего двускатную крышу [6]. В стандартных соглашениях наименования тел Джонсона би- означает соединение двух тел по их базису, а гиро- означает две половинки, повёрнутые относительно друг друга.
Положение гиробифастигиума в списке тел Джонсона непосредственно перед бикуполом[en] объясняется тем, что его можно рассматривать как двуугольный гиробикупол. Подобно тому, как другие правильные куполы имеют чередующиеся квадраты и треугольники, окружающие многоугольник в вершине (треугольник[en], квадрат или пятиугольник[en]), каждая половина гиробифастигиума состоит из чередующихся квадратов и треугольников, соединённых сверху ребром.
Повёрнутые треугольные призматические соты можно построить, упаковывая большое количество одинаковых гиробифастигиумов. Гиробифастигиум является одним из пяти выпуклых многогранников с правильными гранями, способными заполнить пространство (другие четыре — куб, усечённый октаэдр, треугольная и шестиугольная призмы), и единственное тело Джонсона с этим свойством[3] [4].
Следующие формулы для объёма и площади поверхности можно использовать, если все грани являются правильными многоугольниками с рёбрами длины a:
Бипризма Шмитта-Конвея-Данцера (называемая также протоплиткой SCD[7]) является многогранником, топологически эквивалентным гиробифастигиуму, но с параллелограммами и неправильными треугольниками в качестве граней вместо квадратов и правильных треугольников. Подобно гиробифастигиуму, этот многогранник может заполнить пространство, но только апериодически[en]* или с винтовой симметрией[en], а не с полной группой трёхмерной симметрии. Таким образом, этот многогранник даёт частичное решение трёхмерной задачи одной плитки[8][9].
Двойственный многогранник гиробифастигиума имеет 8 граней — 4 равнобедренных треугольника, соответствующих вершинам степени 3, и 4 параллелограмма, соответствующих вершинам степени 4.
Бифастигиум (дигональный ортобикупол[en]), подобно гиробифастигиуму, образован склеиванием двух равносторонних треугольных призм по боковой квадратной стороне, но без поворота. Он не является телом Джонсона, поскольку его треугольные грани копланарны (лежат в одной плоскости). Однако существует самодвойственный выпуклый многогранник с неправильными гранями, обладающий той же комбинаторной структурой. Этот многогранник имеет сходство с гиробифастигиумом в том, что они имеют по восемь вершин и восемь граней, с гранями, образующими пояс из четырёх квадратных граней, разделяющих две пары треугольников. Однако в двойственном гиробифастигиуме две пары треугольников повёрнуты относительно друг друга, а в бифастигиуме не повёрнуты.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .