Усечённый кубооктаэдр | |
---|---|
![]() | |
![]() | |
Тип | Полуправильный многогранни |
Грань | квадрат, шестиугольник, восьмиугольник |
Граней | |
Рёбер | |
Вершин | |
Граней при вершине | |
Телесный угол |
4-6:arccos(-sqrt(6)/3)=144°44’08" |
Точечная группа симметрии | Октаэдрическая, [4,3]+, (432), порядок 24 |
Двойственный многогранник | Гекзакисоктаэдр![]() |
Развёртка | ![]() |
![]() С раскраской граней | ![]()
|
Усечённый кубооктаэдр[1][2], усечённый кубоктаэдр[3] — полуправильный многогранник (архимедово тело) с 12 квадратными гранями, 8 гранями в виде правильного шестиугольника, 6 гранями в виде правильного восьмиугольника, 48 вершинами и 72 рёбрами. Поскольку каждая из граней многогранника имеет центральную симметрию (что эквивалентно повороту на 180°), усечённый кубооктаэдр является зоноэдром.
Этот многогранник имеет несколько названий:
Название усечённый кубооктаэдр, данное первоначально Иоганном Кеплером, несколько вводит в заблуждение. Усечение кубооктаэдра путём отсечения углов (вершин) не позволяет получить эту однородную фигуру — некоторые грани будут прямоугольниками. Однако полученная фигура топологически эквивалентна усечённому кубооктаэдру и всегда может быть деформирована до состояния, когда грани станут правильными.
Альтернативное название — большой ромбокубооктадр — ссылается на тот факт, что 12 квадратных граней лежат в тех же плоскостях, что и 12 граней ромбододекаэдра, который двойственен кубооктаэдру. Ср. малый ромбокубооктаэдр.
Также существует невыпуклый однородный многогранник[en] с тем же именем — невыпуклый большой ромбокубооктаэдр[en].
Декартовы координаты вершин усечённого кубооктаэдра, имеющего ребро длины 2 и имеющего центр в начале координат, являются перестановками чисел:
Площадь A и объём V усечённого кубооктаэдра с ребром длины a равны:
Усечённый кубооктаэдр можно препарировать (вырезать части), превратив его в центральный ромбокубооктаэдр с 6 квадратными куполами[en] над первичными квадратными гранями, 8 треугольными куполами[en] над треугольными гранями и 12 кубами над вторичными квадратными гранями.
Препарированный усечённый кубооктаэдр может дать тороиды Стюарта[en] рода 5, 7 или 11, если удалить центральный ромбокубооктаэдр и либо квадратные купола, либо треугольные купола, или 12 кубов соответственно. Можно построить много других тороидов с меньшей степенью симметрии путём удаления подмножества этих компонент препарации. Например, удаление половины треугольных куполов создаёт тороид рода 3, который (при правильном выборе удаляемых куполов) имеет тетраэдральную симметрию[8][9].
Род 3 | Род 5 | Род 7 | Род 11 |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
Существует только одна однородная раскраска[en] граней этого многогранника, по одному цвету на каждый тип грани.
Существует 2-однородная раскраска тетраэдральной симметрией с раскраской шестиугольников в два цвета.
Усечённый кубооктаэдр имеет две специальные ортогональные проекции в A2 и B2 плоскости Коксетера с [6] и [8] проективными симметриями, и множество [2] симметрий можно построить, исходя из различных плоскостей проекции.
Усечённый кубооктаэдр можно представить как сферическую мозаику и спроектировать на плоскость с помощью стереографической проекции. Эта проекция конформна, она сохраняет углы, но не сохраняет длины и площади. Прямые линии на сфере проецируются в круговые дуги на плоскости.
![]() |
![]() квадрат-центрированная |
![]() шестиугольник-центрированная |
![]() восьмиугольник-центрированная |
Ортогональная проекция | Стереографические проекции |
---|
Усечённый кубооктаэдр входит в семейство однородных многогранников, связанных с кубом и правильным октаэдром.
Симметрия: [4,3], (*432) | [4,3]+, (432) | [3+,4], (3*2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||
{4,3} | t{4,3} | r{4,3} | t{3,4} | {3,4} | rr{4,3} | tr{4,3} | sr{4,3} | s{3,4} | ||
Двойственные многогранники | ||||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | ||
V43 | V3.82 | V(3.4)2 | V4.62 | V34 | V3.43 | V4.6.8 | V34.4 | V35 |
Этот многогранник можно считать членом последовательности однородных вершинных фигур со схемой (4.6.2p) и диаграммой Коксетера — Дынкина
Симметрия *n32[en] n,3[en] |
Сферическая[en]* | Евклидова | Компактная гиперболическая | Паракомп. | Некомпактная гиперболическая | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
*232 [2,3] |
*332 [3,3] |
*432 [4,3] |
*532 [5,3] |
*632 [6,3] |
*732 [7,3] |
*832 [8,3] |
*∞32 [∞,3] |
[12i,3] |
[9i,3] |
[6i,3] |
[3i,3] | |
Фигуры | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфигурация | 4.6.4 | 4.6.6 | 4.6.8 | 4.6.10 | 4.6.12[en] | 4.6.14[en] | 4.6.16[en] | 4.6.∞[en] | 4.6.24i | 4.6.18i | 4.6.12i | 4.6.6i |
Двойственная | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфигурация[en]* | V4.6.4[en] | V4.6.6 | V4.6.8[en] | V4.6.10 | V4.6.12[en] | V4.6.14[en] | V4.6.16[en] | V4.6.∞ | V4.6.24i | V4.6.18i | V4.6.12i | V4.6.6i |
Симметрия *n42 [n,4] |
Сферическая | Евклидова | Компактная гиперболическая | Паракомп. | ||||
---|---|---|---|---|---|---|---|---|
*242 [2,4] |
*342 [3,4] |
*442 [4,4] |
*542 [5,4] |
*642 [6,4] |
*742 [7,4] |
*842 [8,4]… |
*∞42 [∞,4] | |
Общеусечённая фигура |
![]() 4.8.4 |
![]() 4.8.6 |
![]() 4.8.8 |
![]() 4.8.10 |
![]() 4.8.12 |
![]() 4.8.14 |
![]() 4.8.16 |
![]() 4.8.∞ |
Общеусечённые двойственные |
![]() V4.8.4 |
![]() V4.8.6 |
![]() V4.8.8 |
![]() V4.8.10 |
![]() V4.8.12 |
![]() V4.8.14 |
![]() V4.8.16 |
![]() V4.8.∞ |
Граф усечённого кубооктаэдра | |
---|---|
![]() | |
Вершин | 48 |
Рёбер | 72 |
Автоморфизмы | 48 |
Хроматическое число | 2 |
Свойства |
кубический
нуль-симметричный[en] |
В теории графов граф усечённого кубооктаэдра (или граф большого ромбокубооктаэдра) — это граф вершин и рёбер[en] усечённого кубооктаэдра. Он имеет 48 вершин и 72 ребра, нульсимметричен[en] и является кубическим архимедовым графом [10].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .