Трижды отсечённый икосаэдр | ||
---|---|---|
![]() (3D-модель) | ||
Тип | многогранник Джонсона | |
Свойства | выпуклый | |
Комбинаторика | ||
Элементы |
|
|
Грани |
5 треугольников 3 пятиугольника |
|
Конфигурация вершины |
2x3(3.52) 3(33.5) |
|
Развёртка | ||
![]() |
||
Классификация | ||
Обозначения | J63, М7 | |
Группа симметрии | C3v |
Три́жды отсечённый икоса́эдр[1] — один из многогранников Джонсона (J63, по Залгаллеру — М7).
Составлен из 8 граней: 5 правильных треугольников и 3 правильных пятиугольников. Каждая пятиугольная грань окружена двумя пятиугольными и тремя треугольными; среди треугольных 1 грань окружена тремя пятиугольными, 1 грань — тремя треугольными, остальные 3 — двумя пятиугольными и треугольной.
Имеет 15 рёбер одинаковой длины. 3 ребра располагаются между двумя пятиугольными гранями, 3 ребра — между двумя треугольными, остальные 9 — между треугольной и пятиугольной.
У трижды отсечённого икосаэдра 9 вершин. В 6 вершинах (расположенных как вершины правильной усечённой треугольной пирамиды) сходятся две пятиугольных грани и одна треугольная; в остальных 3 (расположенных как вершины правильного треугольника) — одна пятиугольная и три треугольных.
Трижды отсечённый икосаэдр можно получить из икосаэдра, отсекши от того три правильных пятиугольных пирамиды[en] (J2). Вершины полученного многогранника — 9 из 12 вершин икосаэдра, рёбра — 15 из 30 рёбер икосаэдра; отсюда ясно, что у трижды отсечённого икосаэдра тоже существуют описанная и полувписанная сферы, причём они совпадают с описанной и полувписанной сферами исходного икосаэдра.
Трижды отсечённый икосаэдр является вершинной фигурой курносого двадцатичетырёхъячейника[en], одного из однородных четырёхмерных политопов.
Если трижды отсечённый икосаэдр имеет ребро длины , его площадь поверхности и объём выражаются как
Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер в их серединах) —
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .