Треугольная бипирамида | |
---|---|
![]() | |
Тип | Бипирамида и Правильногранный многогранник J11(M3+ A5) - J12(2M1) - J13(2M3) |
Коксетер | ![]() ![]() ![]() ![]() ![]() |
Шлефли | { } + {3} |
Список граней | 6 треугольников |
Число рёбер | 9 |
Число вершин | 5 |
Группа симметрии | D3h, [3,2], (*223) порядка 12 |
Группа вращений | D3, [3,2]+, (223), порядка 6 |
Тип грани | V3.4.4 |
Двойственный | Треугольная призма |
Свойства | Выпуклый, гранетранзитивный |
Развёртка | ![]() |
Треугольная бипирамида — это вид шестигранника, первый многогранник в бесконечной последовательности гранетранзитивных бипирамид. Многогранник двойственен треугольной призме.
Как видно из имени, многогранник можно построить путём соединения двух тетраэдров по одной грани. Хотя все грани многогранника конгруэнтны и тело является изоэдральным, оно не является правильным многогранником, поскольку некоторые вершины относятся к трём граням, а другие — к четырём.
Бипирамида, шесть граней которой являются правильными треугольниками, является одним из правильногранных многогранников, (J12 в нотации Джонсона, 2M1 в нотации Залгаллера). Правильногранный многогранник является одним из 92 строго выпуклых многогранников, имеющих правильные грани, но однородным многогранником[en] он не является (то есть многогранник не является правильным многогранником, архимедовым телом, призмой или антипризмой). Название многограннику дал Норман Джонсон, который первым перечислил эти многогранники в 1966[1]. Как правильногранный многогранник, имеющий в качестве граней правильные треугольники, он является также дельтаэдром.
Двойственный многогранник треугольной бипирамиды — треугольная призма с пятью гранями, два параллельных правильных треугольника, связанные цепочкой из трёх прямоугольников. Хотя треугольная призма имеет вид, являющийся однородным многогранником (с квадратными гранями), двойственный многогранник правильногранного вида бипирамиды имеет прямоугольные грани, а не квадратные, так что многогранник не является однородным.
Двойственная треугольная бипирамида | Развёртка двойственного многогранника |
---|---|
![]() |
![]() |
Треугольную бипирамиду dt{2,3} можно видеть в последовательности полноусечённых многогранников, rdt{2,3}, усечённых, trdt{2,3} и альтернированных (плосконосых) многогранников, srdt{2,3}:
Треугольная бипирамида может быть построена путём наращивания более мелких частей, в частности, из двух правильных октаэдров один над другим с 3 треугольными бипирамидами, добавленными вокруг сторон и по 1 тетраэдру сверху и снизу. Этот многогранник имеет 24 грани в виде правильных треугольников, но правильногранным многогранником он не является, поскольку имеет грани, находящиеся в одной плоскости (копланарные грани). Этот многогранник является копланарным дельтаэдром с 24 треугольными гранями. Этот многогранник получается путём наращивания ячеек в скрученных альтернированных кубических сотах[en]. Бо́льшие треугольные многогранники можно получить аналогичным образом с 9, 16 или 25 треугольниками на большой треугольной грани, что можно рассматривать как часть треугольной мозаики.
Треугольная бипирамида может образовывать замощение пространства с октаэдрами или усечёнными тетраэдрами[2].
![]() Слои однородных четвертькубических сот[en] можно сдвинуть с образованием пар тетраэдральных ячеек, которые комбинируются в треугольные бипирамиды. |
![]() скрученные тетраэдральнооктаэдральные соты[en] имеют пары смежных правильных тетраэдров, которые можно рассматривать как треугольные бипирамиды. |
Многогранник | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
---|---|---|---|---|---|---|---|---|---|---|
Мозаика | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфигурация | V2.4.4 | V3.4.4 | V4.4.4 | V5.4.4 | V6.4.4 | V7.4.4 | V8.4.4 | V9.4.4 | V10.4.4 | ...V∞.4.4 |
Norman D. Johnson. Convex polyhedra with regular faces // Canadian Journal of Mathematics. — 1966. — Т. 18. — С. 169–200. — DOI:10.4153/cjm-1966-021-8.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .