Дважды наращённый усечённый куб | ||
---|---|---|
![]() (3D-модель) | ||
Тип | многогранник Джонсона | |
Свойства | выпуклый | |
Комбинаторика | ||
Элементы |
|
|
Грани |
16 треугольников 10 квадратов 4 восьмиугольника |
|
Конфигурация вершины |
8(3.82) 8(3.43) 16(3.4.3.8) |
|
Развёртка | ||
![]() |
||
Классификация | ||
Обозначения | J67, М5+М11+М5 | |
Группа симметрии | D4h |
Два́жды наращённый усечённый куб[1] — один из многогранников Джонсона (J67, по Залгаллеру — М5+М11+М5).
Составлен из 30 граней: 16 правильных треугольников, 10 квадратов и 4 правильных восьмиугольников. Каждая восьмиугольная грань окружена двумя восьмиугольными и шестью треугольными; среди квадратных граней 2 окружены четырьмя квадратными, остальные 8 — квадратной и тремя треугольными; среди треугольных граней 8 окружены двумя восьмиугольными и квадратной, остальные 8 — восьмиугольной и двумя квадратными.
Имеет 60 рёбер одинаковой длины. 4 ребра располагаются между двумя восьмиугольными гранями, 24 ребра — между восьмиугольной и треугольной, 8 рёбер — между двумя квадратными, остальные 24 — между квадратной и треугольной.
У дважды наращённого усечённого куба 32 вершины. В 8 вершинах сходятся две восьмиугольных грани и одна треугольная; в 16 вершинах сходятся восьмиугольная, квадратная и две треугольных грани; в 8 вершинах сходятся три квадратных и треугольная грани.
Дважды наращённый усечённый куб можно получить из трёх многогранников — усечённого куба и двух четырёхскатных куполов (J4), — приложив куполы к двум противоположным восьмиугольным граням усечённого куба.
Если дважды наращённый усечённый куб имеет ребро длины , его площадь поверхности и объём выражаются как
Дважды наращённый усечённый куб можно расположить в декартовой системе координат так, чтобы его вершины имели координаты
При этом центр симметрии многогранника будет совпадать с началом координат, три из пяти осей симметрии — с осями Ox, Oy и Oz, а три из пяти плоскостей симметрии — с плоскостями xOy, xOz и yOz.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .