Восьмиугольник | |
---|---|
![]() Правильный восьмиугольник | |
Тип | Правильный многоугольник |
Рёбра | 8 |
Символ Шлефли | {8}, t{4} |
Диаграмма Коксетера — Дынкина |
![]() ![]() ![]() ![]() ![]() ![]() |
Вид симметрии | Диэдрическая группа (D5) |
Площадь |
|
Внутренний угол (градусы) | 135° |
Свойства | выпуклый, вписанный, равносторонний, равноугольный[en], изотоксальный |
Пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.
Определение правильного многоугольника может зависеть от определения многоугольника: если он определён как плоская замкнутая ломаная, то появляется определение правильного звёздчатого многоугольника как невыпуклого многоугольника, у которого все стороны между собой равны и все углы между собой равны.
Пусть и — координаты центра, а — радиус описанной вокруг правильного многоугольника окружности, — угловая координата первой вершины, тогда декартовы координаты вершин правильного n-угольника определяются формулами:
где
Пусть — радиус описанной вокруг правильного многоугольника окружности, тогда радиус вписанной окружности равен
а длина стороны многоугольника равна
Площадь правильного многоугольника с числом сторон и длиной стороны составляет:
Площадь правильного многоугольника с числом сторон , вписанного в окружность радиуса , составляет:
Площадь правильного многоугольника с числом сторон , описанного вокруг окружности радиуса , составляет:
Площадь правильного многоугольника с числом сторон равна
где — расстояние от середины стороны до центра, — длина стороны.
Площадь правильного многоугольника через периметр ( ) и радиус вписанной окружности ( ) составляет:
Если нужно вычислить длину стороны правильного n-угольника, вписанного в окружность, зная длину окружности можно вычислить длину одной стороны многоугольника:
Периметр равен
где — число сторон многоугольника.
Правильными многоугольниками по определению являются грани правильных многогранников.
Древнегреческие математики (Антифонт, Брисон Гераклейский, Архимед и др.) использовали правильные многоугольники для вычисления числа π. Они вычисляли площади вписанных в окружность и описанных вокруг неё многоугольников, постепенно увеличивая число их сторон и получая таким образом оценку площади круга.[1]
Построение правильного многоугольника с n сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на n равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.
Евклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Кроме этого, он уже определил первый критерий построимости многоугольников: хотя этот критерий и не был озвучен в «Началах», древнегреческие математики умели построить многоугольник с 2m сторонами (при целом m > 1), имея уже построенный многоугольник с числом сторон 2m — 1: пользуясь умением разбиения дуги на две части, из двух полуокружностей мы строим квадрат, потом правильный восьмиугольник, правильный шестнадцатиугольник и так далее. Кроме этого, в той же книге Евклид указывает и второй критерий: если известно, как строить многоугольники с r и s сторонами, и r и s взаимно простые, то можно построить и многоугольник с r · s сторонами. Что достигается построением многоугольника с s сторонами и многоугольника с r сторонами так, чтобы они были вписаны в одну окружность, и чтобы одна вершина у них была общей. Синтезируя эти два способа, можно прийти к выводу, что древние математики умели строить правильные многоугольники с сторонами, где m — целое неотрицательное число, — числа 3 и 5, а принимают значения 0 или 1.
Средневековая математика почти никак не продвинулась в этом вопросе. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, то его можно построить при помощи циркуля и линейки. На сегодняшний день известны следующие простые числа Ферма: 3, 5, 17, 257, 65537. Вопрос о наличии или отсутствии других таких чисел остаётся открытым. Если брать в общем, из этого следует, что правильный многоугольник возможно построить, если число его сторон равно , где — целое неотрицательное число, принимают значения 0 или 1, а — простые числа Ферма.
Гаусс подозревал, что это условие является не только достаточным, но и необходимым, но впервые это было доказано Пьером-Лораном Ванцелем в 1836 году.
Точку в деле построения правильных многоугольников поставило нахождение построений 17-, 257- и 65537-угольника. Первое было найдено Йоханнесом Эрхингером в 1825 году, второе — Фридрихом Юлиусом Ришело в 1832 году, а последнее — Иоганном Густавом Гермесом в 1894 году.
С тех пор проблема считается полностью решённой.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .