Однородная квадратная антипризма | ||
---|---|---|
![]() Квадратная антипризма | ||
Тип |
Призматический однородный многогранник |
|
Свойства | выпуклый многогранник | |
Комбинаторика | ||
Элементы |
|
|
Грани |
8 треугольников 2 квадрата |
|
Конфигурация вершины | 3.3.3.4 | |
![]() |
||
Развёртка | ||
![]() |
||
Двойственный многогранник | Тетрагональный трапецоэдр[en] | |
Классификация | ||
Символ Шлефли |
s{2,8} sr{2,4} |
|
Символ Витхоффа[en] | | 2 2 4 | |
Диаграмма Дынкина |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
|
Группа симметрии | D4, [4,2]+, (442), порядок=8 |
Квадратная антипризма — это второй многогранник в бесконечном ряду антипризм, образованных последовательностью треугольных граней, закрытых с обеих сторон многоугольниками. Квадратная антипризма известна также как антикуб[1].
Если все грани являются правильными многоугольниками, антипризма является полуправильным многогранником или однородным многогранником[en].
Если восемь точек разместить на сфере с целью максимизации расстояний между ними в некотором смысле, получившаяся фигура соответствует скорее квадратной антипризме, чем кубу. Специфичные методы распределения точек включают, например, задачу Томпсона[en] (минимизация суммы обратных величин расстояний между точками), максимизацию расстояний от точки до ближайшей или минимизацию суммы всех обратных квадратов расстояний между точками.
Согласно теории ОЭПВО молекулярной геометрии[en] в химии, которая основывается на принципе максимизации расстояний между точками, квадратная антипризма является наиболее предпочтительной геометрией, если восемь пар электронов окружают центральный атом. Одна из молекул с такой геометрией — ион октафтороксената (VI) (XeF82−) в соли октафтороксената(VI) нитрозила[en]. Однако молекула эта далека от идеальной квадратной антипризмы[2]. Очень мало ионов имеют кубическую форму, поскольку такая форма привела бы к сильному отталкиванию лигандов. PaF83− является одним из немногих примеров[3].
Кроме того, сера образует восьмиатомные молекулы S8 как наиболее устойчивую аллотропную форму. Молекула S8 имеет структуру, основанную на квадратной антипризме. В этой молекуле атомы занимают восемь вершин антипризмы, а восемь рёбер между рёбрами соответствуют ковалентной связи между атомами серы.
Главное здание в комплексе Центра международной торговли (на месте старого Центра международной торговли, разрушенного 11 сентября 2001) имеет форму очень высокой сужающейся к верху квадратной антипризмы. Здание не является истинной антипризмой, поскольку она сужается к верху — верхний квадрат имеет вдвое меньшую площадь по сравнению с основанием.
Скрученная призма (по часовой стрелке или против часовой стрелки) может иметь то же расположение вершин. Этот многогранник можно рассматривать как форму, собранную из 4 тетраэдров с вырезанными частями. Однако после вырезания тело нельзя разбить на тетраэдры без добавления новых вершин. Тело имеет половину симметрий однородного тела: Dn, [4,2]+[4][5].
Скрученно удлинённая четырёхугольная пирамида является правильногранным многогранником (J10 = М2+А4), полученным удлинением квадратной пирамиды. Подобным же образом, скрученно удлинённая четырёхугольная бипирамида (J17 = М2+А4+М2) является дельтаэдром (многогранником, грани которого являются правильными треугольниками), построенным путём замены обоих квадратов квадратной антипризмы квадратными пирамидами.
Плосконосый двуклиноид(J84 = М25) является другим дельтаэдром, который получается заменой двух квадратов квадратной антипризмы парами равносторонних треугольников. Плосконосую квадратную антипризму (J85 = М28) можно рассматривать как квадратную антипризму, полученную путём вставки цепочки равносторонних треугольников. Клинокорона (J86 = М21) и большая клинокорона (J88 = М23) являются другими правильногранными многогранниками, которые, подобно другим квадратным антипризмам, состоят из двух квадратов и чётного числа равносторонних треугольников.
Квадратная антипризма может быть усечена и альтернирована для образования плосконосых антипризм:
Антипризма | Усечение t |
Альтернирование[en] ht |
---|---|---|
![]() s{2,8} ![]() ![]() ![]() ![]() ![]() |
![]() ts{2,8} |
![]() ss{2,8} |
Будучи антипризмой, квадратная антипризма принадлежит семейству многогранников, в которые входят октаэдр (который можно рассматривать как треугольную антипризму), пятиугольная антипризма, шестиугольная антипризма и восьмиугольная антипризма[en].
Многогранник | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Мозаика | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |||||
Конфигурация | V2.3.3.3 | 3.3.3.3 | 4.3.3.3 | 5.3.3.3 | 6.3.3.3 | 7.3.3.3 | 8.3.3.3 | 9.3.3.3 | 10.3.3.3 | 11.3.3.3 | 12.3.3.3 | 17.3.3.3 | ...∞.3.3.3 |
Квадратная антипризма является первой в ряду плосконосых многогранников и мозаик с вершинной фигурой 3.3.4.3.n.
4n2 симметрии плосконосых мозаик: 3.3.4.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
Симметрия 4n2 |
Сферическая | Евклидова | Компактная гиперболическая | Paracomp. | ||||
242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
Плосконосые мозаики |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конфиг. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.7 | 3.3.4.3.8 | 3.3.4.3.∞ |
Гиро- мозаики |
![]() |
![]() |
![]() |
![]() |
||||
Конфиг. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.∞ |
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .