WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Наиболее известный сферический многогранник — это футбольный мяч, рассматриваемый как сферический усечённый икосаэдр.
Этот пляжный мяч[en] показывает осоэдр с шестью серповидными гранями, если удалить два белых круга на концах.

В геометрии сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.

Наиболее известным примером сферического многогранника служит футбольный мяч, который можно понимать как усечённый икосаэдр.

Некоторые «несобственные» многогранники, такие как осоэдры и их двойственные диэдры, существуют только как сферические многогранники и не имеют аналогов с плоскими гранями. В таблице с примерами ниже {2, 6} — осоэдр, а — {6, 2} двойственный ему диэдр.

История

Первые известные сделанные человеком многогранники — это сферические многогранники, высеченные в камне. Многие из них были найдены в Шотландии и датируются периодом Неолита.

Во времена европейских «тёмных столетий» исламский учёный Абуль-Вафа аль-Бузджани написал первую серьёзную работу о сферических многогранниках.

Две сотни лет назад, в начале 19-го века, Пуансо использовал сферические многогранники для обнаружения четырёх правильных звёздчатых многогранников.

В середине 20-го века Коксетер использовал их для перечисления всех (за исключением одного) однородных многогранников[en], посредством калейдоскопического построения (Построение Витхоффа).

Примеры

Все правильные, полуправильные многогранники и их двойственные можно спроектировать на сферу как мозаику. В таблице ниже указаны символы Шлефли {p, q} и схема вершинной фигуры a.b.c. …:

Символ Шлефли {p, q} t{p, q} r{p, q} t{q, p} {q, p} rr{p, q} tr{p, q} sr{p, q}
Вершинная фигура pq q.2p.2p p.q.p.q p. 2q.2q qp q.4.p. 4 4.2q.2p 3.3.q.3.p
Тетраэдральные
(3 3 2)

33

3.6.6

3.3.3.3

3.6.6

33

3.4.3.4

4.6.6

3.3.3.3.3

V3.6.6

V3.3.3.3

V3.6.6

V3.4.4.4

V4.6.6

V3.3.3.3.3
Октаэдральные
(4 3 2)

43

3.8.8

3.4.3.4

4.6.6

34

3.4.4.4

4.6.8

3.3.3.3.4

V3.8.8

V3.4.3.4

V4.6.6

V3.4.4.4

V4.6.8[en]

V3.3.3.3.4[en]
Икосаэдральные
(5 3 2)

53

3.10.10

3.5.3.5

5.6.6

35

3.4.5.4

4.6.10

3.3.3.3.5

V3.10.10

V3.5.3.5

V5.6.6

V3.4.5.4

V4.6.10

V3.3.3.3.5[en]
Диэдральные
примеры=6
(2 2 6)

62

2.12.12

2.6.2.6

6.4.4

26

4.6.4

4.4.12[en]

3.3.3.6
Класс 2 3 4 5 6 7 8 10
Призма
(2 2 p)
Бипирамида
(2 2 p)
Антипризма
Трапецоэдр

Несобственные случаи

Сферические мозаики допускают случаи, которые невозможны для многогранников, а именно — осоэдры, правильные фигуры {2,n}, и диэдры, правильные фигуры {n,2}.

Семейство правильных осоэдов
Рисунок
Шлефли {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8}…
Коксетер
Грани и
рёбра
2345678
Вершины 2
Правильные диэдры: (сферические мозаики)
Рисунок
Шлефли {2,2} {3,2} {4,2} {5,2} {6,2}…
Коксетер
Грани 2 {2}2 {3}2 {4}2 {5}2 {6}
Рёбра и
вершины
23456

Связь с мозаиками на проективной плоскости

Поскольку сфера является 2-к-1 накрытием проективной плоскости, проективные многогранники соответствуют двойному накрытию сферическими многогранниками, имеющими центральную симметрию.

Наиболее известными примерами проективных многогранников служат правильные проективные многогранники, образованные из центрально симметричных правильных многогранников, а также из бесконечных семейств чётных диэдров и осоэдров: [1]

См. также

Примечания

  1. Кокстер, 1966, с. 547-552 §3 Правильные карты.

Литература

  • Peter McMullen, Egon Schulte. 6C. Projective Regular Polytopes // Abstract Regular Polytopes. — 1st. — Cambridge University Press, 2002. ISBN 0-521-81496-0.
  • L. Poinsot. Memoire sur les polygones et polyèdres // J. de l'École Polytechnique. — 1810. Вып. 9. С. 16–48.
  • H. S. M. Coxeter, M. S. Longuet-Higgins, J. C. P. Miller. Uniform polyhedra // Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences. — The Royal Society, 1954. Т. 246, вып. 916. С. 401–450. ISSN 0080-4614. DOI:10.1098/rsta.1954.0003.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии