Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Термин изотоксальный происходит от греческого τοξον, означающего дуга.
Изотоксальный многоугольник всегда является равносторонним, но не все равносторонние многоугольники изотоксальны. Двойственные изотоксальным многоугольникам являются изогональными многоугольниками.
В общем случае изотоксальный 2n-угольник будет иметь Dn (*nn) диэдральную симметрию. Ромб является рёберно транзитивным многоугольником с симметрией D2 (*22).
Все правильные многоугольники (правильный треугольник, квадрат, и т. д.) изотоксальны, имея удвоенный минимальный порядок симметрии — правильный n-угольник имеет Dn (*nn) диэдральную симметрию. Правильный 2n-угольник является вершинно транзитивным многоугольником и его вершины могут быть помечены поочерёдно двумя цветами, что удаляет осевую симметрию через середину рёбер.
D2 (*22) | D3 (*33) | D4 (*44) | D5 (*55) | |||||
---|---|---|---|---|---|---|---|---|
Ромб | Равносторонний треугольник | Вогнутый шестиугольник | Самопересекающийся шестиугольник | Выпуклый восьмиугольник | Правильный пятиугольник | Самопересекающаяся (правильная) пентаграмма | Самопересекающаяся декаграмма | |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Правильные многогранники являются изоэдральными (гране транзитивными), изогональными (вершинно транзитивными) и изотоксальными (рёберно транзитивными). Квазиправильные многогранники являются изогональными и изотоксальными, но не изоэдральными. Их двойственные многогранники изоэдральны и изотоксальны, но не изогональны.
Квазиправильный многогранник |
Квазиправильный двойственный многогранник |
Квазиправильный звёздчатый многогранник |
Квазиправильный двойственный звёздчатый многогранник |
Квазиправильная мозаика |
Квазиправильная двойственная мозаика |
---|---|---|---|---|---|
![]() Кубооктаэдр является изогональным и изотоксальным многоранником |
![]() Ромбододекаэдр является изоэдральным и изотоксальным многоранником | ![]() Большой икосододекаэдр[en] является изогональным и изотоксальным звёздчатым многоранником |
![]() Большой ромбический тридцатигранник[en] |
![]() Тришестиугольная мозаика является изогональной и изотоксальной мозаикой |
![]() Ромбическая мозаика является изоэдральной и изотоксальной мозаикой с симметрией p6m (*632). |
Не любой многогранник или 2-мерная мозаика, состоящие из правильных многоугольников, изотоксален. Например, усечённый икосаэдр (знакомый нам по футбольному мячу) имеет два типа рёбер — шестиугольник-шестиугольник и шестиугольник-пятиугольник и нет возможности симметрией перевести ребро шестиугольник-шестиугольник в шестиугольник-пятиугольник.
Изотоксальный многоугольник имеет те же самые диэдральные углы для всех рёбер.
Существует девять выпуклых рёберно транзитивных многогранников, образованных из правильных многогранников, 8, образованных из многогранников Кеплера — Пуансо, и ещё шесть являются квазиправильными звёздчатыми многогранниками (3 | p q) и их двойственными.
Существует 5 многоугольных рёберно транзитивных мозаик на евклидовой плоскости и бесконечно много на гиперболической плоскости, включая построения Визоффв из правильных гиперболических мозаик {p, q} и неправильных (p q r) групп.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .