В математике, решение уравнения — это задача по нахождению таких значений аргументов (чисел, функций, наборов и т. д.), при которых выполняется равенство (выражения слева и справа от знака равенства становятся эквивалентными). Значения неизвестных переменных, при которых это равенство достигается, называются решениями или корнями данного уравнения. Решить уравнение означает найти множество всех его решений (корней) или доказать, что корней нет.
Например, уравнение решается для неизвестного с помощью замены так как замена переменной на выражение превращает уравнение в тождество: Кроме того, если положить неизвестной переменную тогда уравнение решается с помощью замены . Замена переменной на выражение превращает уравнение в тождество: Также и могут одновременно рассматриваться как неизвестные переменные. Существует много решений уравнения для подобного случая, например, — то есть, и а в общем, для всех возможных значений.
В зависимости от задачи может требоваться найти одно решение (любое подходящее решение) или все решения уравнения. Все решения уравнения называются множеством решений. Помимо простого нахождения решения, может ставиться задача по нахождению наилучшего решения уравнения по какому-либо параметру. Задачи такого рода называются задачами оптимизации. Решения задач оптимизации, как правило, не называются «решениями уравнения».
Под методом решения задачи (в т.ч. уравнения) понимается, прежде всего, пошаговый алгоритм.
Аналитический метод решения (иначе, просто аналитическое решение) — это выражение замкнутой формы, которое может быть вычислено за конечное число операций[1]. Однако, существуют формулы (выражения), содержащие в себе невычислимые (или непредставимые) на данном этапе развития теории и технологий функции. Далее под аналитическим решением мы будем иметь в виду любое решение, записанное в формульном виде, содержащее в себе известные или определённые функции от параметров (в случае числовых уравнений) или переменных (в случае функциональных уравнений). Ниже приведены основные аналитические методы решений различного вида уравнений.
Самый простой нелогичный (т.к. не требует никакого подчинения законам математической логики) метод решения уравнения, заключающийся в угадывании правильного значения корня. С этого метода начинается обучение решению более сложных уравнений, чем линейные (напр., квадратные и кубические), в 5-ых—7-ых классах средней образовательной школы в России.
Пример решения уравнения методом подбора:
Легко догадаться, что одним из корней уравнения будет Чтобы проверить правильность подобранного значения, необходимо подставить его в исходное уравнение вместо переменной .
Как видно, требуемое тождественное равенство выполняется, а это значит, что найденное нами значение является правильным (то есть входит в множество решений уравнения).
Недостатки метода подбора:
Преимущества метода подбора:
Данный метод решения уравнений, называемый иначе методом построения обратной функции, основывается на свойстве обратной функции[5] нивелировать влияние функции на значение переменной:
или, что по сути то же самое,
Метод обычно используется в составе других методов решений и самостоятельно применяется лишь тогда, когда переменные и константы находятся по разные стороны от знака равенства:
Самый простой пример, линейное уравнение: Здесь значит и получаем: теперь то же самое нужно проделать с другой частью уравнения: отсюда Проверка:
Ещё пример:
Недостатки метода обратной операции:
Преимущества метода обратных операций:
Данный метод решения задач (в том числе, уравнений) основывается на базовом свойстве графиков функций — определённым и (в идеале) точным отображением значений аргументов и значений функций от этих аргументов в пространстве координат, вследствие чего каждая точка графика имеет не более одного набора этих значений для каждой конкретной функции (то есть два значения от одного и того же аргумента не могут быть "заключены" в одной и той же точке координат).
В частности, две функции имеют одну общую точку (точку пересечения графиков) тогда и только тогда, когда их значения от одного(их) и того(тех) же значения(й) аргумента(ов) равны:
Например, решим графически уравнение (см. рисунок ниже):
Здесь чёрным цветом показан график функции синим цветом — график функции Абсциссы точек A и B образуют множество решений исходного уравнения: что легко находится проекцией точек на ось абсцисс (ось ). Проверка: и Решение является исчерпывающим, поскольку прямая не может пересечь параболу более двух раз.
Недостатки графического метода:
Преимущества графического метода:
Кроме описанного метода существуют специальные модифицированные методы, такие, например, как метод Лиля.
Метод оценки ОДЗ (области допустимых значений) заключается в отсечении некоторой части значений из области значений функции, в которых данная функция не существует (иначе, отсечение значений, которые она не может принимать).
Например, решим методом оценки ОДЗ следующую систему уравнений:
Начнём с верхнего уравнения, основываясь на следующем свойстве суммы взаимно-обратных чисел: Оно является частным случаем неравенства о средних[10]. Причём равенство двум достигается только в том случае, если эти числа равны: В результате получаем множество решений:
В нижнем уравнении присутствует неотрицательная функция возведения в квадрат и функция значения которой лежат в диапазоне
Как видно, второе решение не подходит по обоим критериям, что избавляет нас от необходимости второй проверки. Осталось проверить первый корень: Значит, единственное решение исходной системы уравнений — это
Недостатки метода оценки ОДЗ:
Преимущества метода оценки ОДЗ:
Метод разложения на множители уравнений (то есть их факторизация) применяется для представления их в виде произведения нескольких менее сложных, чаще, однотипных уравнений. Разложение основывается на свойстве произведения нескольких множителей равняться нулю тогда и только тогда, когда хотя бы один из этих множителей также равен нулю[13][14].
Этот метод решения именно полиномиальных уравнений являлся отдельным направлением алгебры на протяжении многих столетий[15] и представляет из себя совокупность сразу нескольких алгоритмов получения решения[16]. Его актуальность и значимость есть следствие основной теоремы алгебры, согласно которой любой многочлен любой ненулевой конечной степени имеет хотя бы один комплексный корень[17].
Самым простым из всех способов разложения является, пожалуй, деление многочлена на многочлен.
Недостатки метода факторизации многочленов:
Преимущества метода факторизации многочленов:
К числу этих методов относятся наборы действий, выполняемых над обеими частями уравнения (перед знаком равенства и после), приводящие к уравнениям-следствиям или равносильным уравнениям, решить которые гораздо легче вследствие наличия известного алгоритма решения или представления их в более удобной форме, позволяющей быстро соотнести их с тем или иным известным алгоритмом решения. Ниже приведён список основных преобразований.
Любую часть уравнения можно "перенести в другую сторону, за знак равенства", прибавив её к другой части уравнения и только поменяв знак(!) на противоположный.
Например, решим в вещественных числах уравнение:
Для этого перенесём правую часть уравнения в левую, поменяв знак правой части на противоположный:
Далее, вследствие ассоциативности функции умножения на константу, сложим подобные слагаемые:
Теперь легко увидеть, что получившаяся левая часть напоминает формулу полного квадрата:
Отсюда находим корни: Проверка:
Перенос слагаемых можно выполнять в любых случаях (не вынося аргумент из-под функции), при этом получившиеся уравнения являются равносильными.
Этот приём преобразования уравнений основан на свойстве числового равенства — его инвариантности относительно сложения (числовое равенство останется таковым, даже если к обеим его частям прибавить какое-либо число, в том числе и отрицательное). В свою очередь, данное свойство числового равенства является всего лишь частным случаем аналогичного свойства числовых нестрогих неравенств[20]. Так как большинство решаемых уравнений выполняются над полем каких-либо чисел (бывают нечисловые уравнения, например, — функциональные, где в качестве неизвестной переменной выступают функции), то такие же числовые свойства распространяются и на уравнения.
Суть преобразования состоит в том, что к обеим частям уравнения можно прибавить одно и то же число или выражение с числовой функцией, ОДЗ которой не уже, чем ОДЗ функций в исходном уравнении. Перенос слагаемых является просто частным случаем прибавления (вычитания) выражений. В частности, "взаимоуничтожение" одинаковых слагаемых по разные стороны знака равенства есть следствие возможности переноса.
Прибавление числового выражения возможно всегда, однако, приводит к равносильному уравнению только тогда, когда область ОДЗ функции в выражении не уже, чем ОДЗ функций исходного уравнения. Например, прибавив к обеим частям выражение мы придём к уравнению-следствию, в котором неотрицательность переменной может отсеять существующие отрицательные корни, из-за чего позднее нам придётся учитывать это ограничение.
Также бывает полезен несколько обратный приём — выделение слагаемого, например:
Умножение числовых равенств (то есть, числовых уравнений) на одно и то же ненулевое числовое выражение есть следствие возможности прибавления этого выражения, а, значит, распространяет на себя его свойства, добавляя, разве что, ограничение на не равенство переменной нулю.
Используя предыдущий пример:
Теперь поделим оба слагаемых на
Однако, поделив на это выражение, мы установили ограничение — его неравенство нулю: Поэтому теперь необходимо проверить, не является ли данное значение корнем исходного уравнения, отсеянным этим самым ограничением:
Как видно, сужение ОДЗ даже на одну точку (число) способно сильно исказить множество всех возможных допустимых решений.
Тождественная замена переменной другим выражением, содержащим функции от переменной, ОДЗ которых не уже, чем ОДЗ функций исходного уравнения, также всегда приводит к равносильному уравнению. Сама его возможность и равносильность основываются на свойстве транзитивности чисел (если в тройке чисел какие-то два числа попарно равны третьему, следовательно, все три числа равны между собой[21]).
Замена очень часто используется в решении уравнений любого рода и даже больше (например, для уравнения третьей степени существует тригонометрическая формула Виетта, для нахождения первообразных — универсальная тригонометрическая подстановка Вейерштрасса, для интегралов от рациональных функций — специальные подстановки Эйлера и т.д.).
По сути, любая формула корней уравнения есть частный случай замены, когда в выражении, заменяющем переменную, не содержится переменных совсем (то есть функция в этом выражении содержит в качестве аргумента(ов) константу(ы)).
Замена выражения также помогает прийти к более лёгкому уравнению. Однако, многие часто путают корни уравнения-следствия с корнями исходного уравнения, ошибочно подставляя их не в то уравнение при проверке. Так, например, сделав замену и получив конкретное значение в качестве корня уравнения-следствия с переменной , для проверки необходимо сначала подставить в формулу замены чтобы рассчитать , которое и будет корнем исходного уравнения от переменной и которое необходимо подставить в него для проверки.
Однако, существуют типы уравнений, для которых определённые виды замены делать нельзя.
Например, уравнение вида: где — это гипероператор порядка (для каждого из них есть дополнительные ограничения на )
Если сделать замену то получим уравнение-следствие:
Отсюда следует, что, либо и решения нет (что противоречит "теоретической практике"), либо гипероператоры неоднозначны (что неверно для первых трёх операторов — сложения, умножения и возведения в степень).
Для наглядности, положим, что : Сделаем замену откуда приходим к противоречию хотя решение данного исходного уравнения существует и выражается через суперкорень второй степени[22].
Благодаря возможности умножения числового выражения на числовое выражение становится возможным возведение числового выражения в ненулевую степень, которое является частным случаем умножения при идентичности множителей. Однако, возведение в степень строго определено лишь для неотрицательных чисел, поэтому, возводя в степень выражение с переменной, необходимо указать соответствующее ограничение и учитывать его в дальнейшем.
Если всё-таки без возведения в степень отрицательного выражения не обойтись, то показатель степени должен быть целым числом, иначе такое преобразование приведёт к решению уже двух уравнений вместо одного и увеличению количества посторонних корней, поскольку: но в то же время С иррациональными показателями ситуация пока что не определена.
Возведение в нулевую степень нуля (или выражения, которое может принимать нулевое значение) также невозможно (см. Неопределённость).
Чётные показатели степени удваивают количество решаемых уравнений, поскольку показательные функции чётных степеней чётные. Количество посторонних корней также увеличивается.
Согласно свойствам числовых нестрогих неравенств[20], обе части уравнения можно логарифмировать. Однако, здесь тоже есть свои ограничения (для поля вещественных чисел):
Именно поэтому логарифмирование, как правило, приводит не к увеличению посторонних, а к потере истинных корней.
В противоположность возведению в степень числовые равенства можно преобразовывать в показатели степени:
Тогда, как числовые выражения могут быть любыми, основание должно быть положительно (или отрицательно — с наложением на переменную соответствующих ограничений).
Более того, потенцировать можно даже показатели степени у выражений, однако, при этом между основанием и степенью есть своеобразная ограничивающая взаимозависимость, из-за чего основание не может быть любым:
Это легко доказывается следующим образом:
Подставляем вместо получившееся выражение в исходное уравнение:
отсюда получаем: Далее:
В случае формула значительно упрощается:
Числовые выражения можно возводить в тетрацию с показателем 2 (то есть в степень самих себя):
Разумеется, сюда же накладываются ограничения на положительность самих выражений или доопределения возведения в степень в случае их отрицательности.
Возведение в более высокие показатели тетрации накладывают определённые ограничения в виде взаимозависимостей выражений (см. выше), поскольку тогда будут иметь место так называемые "степенные башни". Так же можно извлекать суперкорень с соответствующим показателем, но также стоит учитывать, что данная операция точно определена пока что только для положительных чисел.
Пример:
Сделаем замену
Однако, вследствие неопределённости тетрации при неположительных числах, у нас исчез второй корень уравнения:
Также благодаря возможности применения предыдущей итерации (возведения в степень), числовые равенства возможно преобразовывать в показатели тетрации:
При этом стоит учитывать положительность основания (поскольку даже ноль не может быть возведён в степень самого себя) и различные неопределённости (недоговорённости) нецелых и/или отрицательных показателей тетрации.
Эту тенденцию можно продолжить итерировать и далее (см. Пентация, Гипероператор).
С точной уверенностью суперлогарифмировать числовые выражения пока нельзя по причине малоизученности свойств гипероператоров и обратных к ним функций, поскольку неясно, какие ограничения накладывает такое преобразование.
Тригонометрическими называются уравнения, содержащие в качестве функций от переменных только тригонометрические функции (то есть уравнения, содержащие в себе композиции только тригонометрических функций).
При решении такого рода уравнений применяются различные тождества, основанные на свойствах самих тригонометрических функций (см. Тригонометрические тождества). В этих преобразованиях, однако, стоит учитывать составную природу тангенса и котангенса, синус и косинус в составе которых являются независимыми друг от друга функциями от одной и той же переменной.
Так, сделав очевидную замену мы получим совершенно новую функцию, значения которой будут отличаться от исходного соотношения тангенса: (см. графики ниже).
Такое изменение происходит из-за того, что формуле с заменой подразумевается арифметический корень, значение которого всегда неотрицательно. Однако, если бы мы подписали "±", функция тангенса потеряла бы присущую ей однозначность.
Решим в качестве примера уравнение посложнее:
Т.к. то получаем:
Умножим на 4 и опять получим синус двойного угла:
Окончательная формула корней:
Дифференциальные уравнения — это, как правило, уравнения, содержащие в себе числовые функции и их производные. Таким образом, все преобразования, выполняемые над числовыми уравнениями, распространяются и на эти типы уравнений. Главное — помнить, что лучше проводить такие преобразования, в которых области допустимых значений входящих в уравнение функций не изменялись совсем. Отличительной особенностью дифференциальных уравнений от числовых является возможность их интегрирования (дифференцирования) по обе стороны от знака равенства.
Дифференциальные уравнения, так же как и числовые, решается аналитическим способом (символьное интегрирование) при поиске первообразной функции или численным — при вычислении определённого интеграла на каком-либо отрезке. Ниже приведены основные и наиболее часто используемые преобразования для нахождения аналитического решения.
Большинство типов дифференциальных уравнений можно привести к уравнениям с разделяющимися переменными, общее решение которых уже известно[23]. К числу таких преобразований можно отнести[23]:
Линейные дифференциальные уравнения, как правило, решаются тремя методами[23]:
Дифференциальные уравнения Бернулли также сводятся либо к линейным, либо к уравнениям с разделяющимися переменными с помощью замен[24].
Однородные дифференциальные уравнения второго и выше порядков решаются путём замены функции и переходу таким способом к решению характеристического алгебраического уравнения от переменной степени, равной порядку исходного дифференциального уравнения.
Существуют типы дифференциальных уравнений высших порядков, порядок которых можно понизить заменой производной какого-либо порядка на другую функцию. Таким же образом они могут быть сведены к уравнениям с разделяющимися переменными.
Интегральные уравнения являются более сложными, чем дифференциальные, но в своих решениях, как и они, часто содержат интегральные преобразования:
Помимо дифференциальных и интегральных существует также смешанный тип — интегро-дифференциальные уравнения, основным направлением решения которых является их сведение к двум предыдущим типам уравнений различными методами.
Общего решения функциональных уравнений не существует, как и общих методов. Сами по себе функциональные уравнения являются свойствами своего решения — функции или типа функций. Например, решением функционального уравнения Абеля является функция [25]
Данные методы представляют собой отдельную совокупность алгоритмов получения решения конкретного уравнения с заданной точностью. Основные отличия от аналитического решения:
Этот численный метод решения уравнения основан на противоположности знаков непрерывной функции около её нуля. Сам алгоритм довольно прост:
Пример: найдём положительный корень уравнения Для этого перепишем уравнение в функцию: Построив график этой функции легко убедиться, что искомое значение лежит в отрезке Найдём значения функции от концов этого отрезка и его середины: — как видно, произведение значений и даёт отрицательный результат, в отличие от Теперь отрезок, в котором лежит корень, сокращается: Повторим процедуру снова (при этом значения функции на концах уже известны из предыдущих расчётов): — теперь отрезок сокращается "в другую сторону": Следующий цикл: — получаем новый отрезок: Цикл продолжается до требуемой точности, а затем, в качестве приближённого значения корня, выбирается тот конец отрезка, значения функции от которого наиболее близко к нулю. В нашем примере значение 4,44129 будет являться корнем исходного уравнения до пятого знака после запятой.
Итерационный численный метод нахождения корня уравнения с заданной точностью, в основе которого лежит постоянное приближение к корню через пересечения хорд с осью абсцисс. Здесь используется следующая формула:
однако она имеет низкую скорость сходимости, поэтому вместо неё чаще используют алгоритм:
в различных источниках обе эти формулы называют по-разному — методом хорд и/или методом секущих.
Общий алгоритм использования метода в геометрическом смысле имеет вид:
Основная идея метода Ньютона заключается в использовании итеративного приближения дифференцируемой функции по следующему алгоритму[26]:
Для начала нужно убедиться, что функция, приравненная к нулю в данном уравнении, удовлетворяет некоторым критериям, ограничениям и условиям применимости данного метода, затем — удостовериться, что рядом с обнаруженным неизвестным корнем нет других неизвестных корней (иначе, можно попросту "сбиться с толку"). Теперь следует выбрать значение переменной , близкое к корню (чем ближе, тем лучше), и подставить его в вышеописанную формулу. Дальше возможно два исхода:
Итерационный процесс продолжается, пока полученное приближение искомого корня уравнения не достигнет требуемой точности.
Обобщив метод хорд (секущих) и метод Ньютона можно прийти к выводу, что они оба являются разновидностью одного и того же алгоритма. Его можно описать следующим образом:
В частности, положив придём к алгоритму, называемому методом одной касательной; а при получится тот самый метод Ньютона.
Пример: найти приближение корня уравнения Для начала определим функцию и выразим через неё:
— теперь необходимо убедиться, соответствует ли полученная функция условию сходимости, —
но
Теперь остаётся выбрать значение для первой итерации, близкое к корню (чем ближе, тем быстрее сходимость метода). Пусть тогда
Повторим процедуру уже для нового значения:
Пройдя таким образом 22 шага итерации, мы получим приближение для которого с точностью до пятнадцатого знака после запятой верно равенство: . Проверка:
Обратим внимание, что скорость сходимости зависит также и от самой функции. Так, если вместо множителя мы поставим , то при одинаковом изначальном значении и уровне погрешности количество шагов увеличится с 22 до 44.
Проверка решения необходима для определения того или иного полученного решения истинным и/или посторонним. Уравнение является частным случаем задачи, поэтому на них распространяются аналогичные методы проверки, а именно[27]:
Однако, выполнение проверки алгоритма возможно не всегда или не в полном объёме, к тому же при выполнении самой проверки также могут быть допущены ошибки, и полноту решения данный метод "не проверяет" почти никогда. В таких случаях используются иные методы, такие, например, как[27]:
Этот раздел статьи ещё не написан. |
Этот раздел статьи ещё не написан. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .