WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Преобразова́ние Лапла́са (ℒ) — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения.

Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями. Так, свёртка двух функций сводится в пространстве изображений к операции умножения, а линейные дифференциальные уравнения становятся алгебраическими.

Определение

Прямое преобразование Лапласа

Преобразованием Лапласа функции вещественной переменной называется функция комплексной переменной [1], такая что:

Правая часть этого выражения называется интегралом Лапласа.

Функцию называют оригиналом в преобразовании Лапласа, а функцию называют изображением функции .

В литературе связь между оригиналом и изображением часто обозначают так: причём изображение принято записывать с заглавной буквы.

Обратное преобразование Лапласа

Обратным преобразованием Лапласа функции комплексного переменного называется функция вещественной переменной, такая что:

где  — некоторое вещественное число (см. условия существования). Правая часть этого выражения называется интегралом Бромвича.

Двустороннее преобразование Лапласа

Двустороннее преобразование Лапласа — обобщение на случай задач, в которых для функции участвуют значения .

Двустороннее преобразование Лапласа определяется следующим образом:

Дискретное преобразование Лапласа

Применяется в сфере систем компьютерного управления. Дискретное преобразование Лапласа может быть применено для решётчатых функций.

Различают -преобразование и -преобразование.

  • -преобразование

Пусть  — решётчатая функция, то есть значения этой функции определены только в дискретные моменты времени , где  — целое число, а  — период дискретизации.

Тогда, применяя преобразование Лапласа, получим:

  • -преобразование

Если применить следующую замену переменных:

получим -преобразование:

Свойства и теоремы

  • Абсолютная сходимость

Если интеграл Лапласа абсолютно сходится при , то есть существует предел

то он сходится абсолютно и равномерно для и  — аналитическая функция при (  — вещественная часть комплексной переменной ). Точная нижняя грань множества чисел , при которых это условие выполняется, называется абсциссой абсолютной сходимости преобразования Лапласа для функции .

  • Условия существования прямого преобразования Лапласа

Преобразование Лапласа существует в смысле абсолютной сходимости в следующих случаях:

  1. : преобразование Лапласа существует, если существует интеграл ;
  2. : преобразование Лапласа существует, если интеграл существует для каждого конечного и для ;
  3. или (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции (производная от ) для .

Примечание: это достаточные условия существования.

  • Условия существования обратного преобразования Лапласа

Для существования обратного преобразования Лапласа достаточно выполнение следующих условий:

  1. Если изображение  — аналитическая функция для и имеет порядок меньше −1, то обратное преобразование для неё существует и непрерывно для всех значений аргумента, причём для .
  2. Пусть , так что аналитична относительно каждого и равна нулю для , и , тогда обратное преобразование существует и соответствующее прямое преобразование имеет абсциссу абсолютной сходимости.

Примечание: это достаточные условия существования.

  • Теорема о свёртке

Преобразованием Лапласа свёртки двух оригиналов является произведение изображений этих оригиналов:

  • Умножение изображений

Левая часть этого выражения называется интегралом Дюамеля, играющим важную роль в теории динамических систем.

  • Дифференцирование и интегрирование оригинала

Изображением по Лапласу первой производной от оригинала по аргументу является произведение изображения на аргумент последнего за вычетом оригинала в нуле справа:

В более общем случае (производная -го порядка):

Изображением по Лапласу интеграла от оригинала по аргументу является изображение оригинала, делённое на свой аргумент:

  • Дифференцирование и интегрирование изображения

Обратное преобразование Лапласа от производной изображения по аргументу есть произведение оригинала на свой аргумент, взятое с обратным знаком:

Обратное преобразование Лапласа от интеграла изображения по аргументу есть оригинал этого изображения, делённый на свой аргумент:

  • Запаздывание оригиналов и изображений. Предельные теоремы

Запаздывание изображения:

Запаздывание оригинала:

где  — функция Хевисайда.

Теоремы о начальном и конечном значении (предельные теоремы):

, если все полюсы функции находятся в левой полуплоскости.

Теорема о конечном значении очень полезна, так как описывает поведение оригинала на бесконечности с помощью простого соотношения. Это, например, используется для анализа устойчивости траектории динамической системы.

  • Другие свойства

Линейность:

Умножение на число:

Прямое и обратное преобразование Лапласа некоторых функций

Ниже представлена таблица преобразования Лапласа для некоторых функций.

ФункцияВременная область
Частотная область
Область сходимости
для причинных систем
1дельта-функция
1aзапаздывающая дельта-функция
2запаздывание -го порядка с частотным сдвигом
2aстепенная -го порядка
2a.1степенная -го порядка
2a.2функция Хевисайда
2bфункция Хевисайда с запаздыванием
2c«ступенька скорости»
2d -го порядка с частотным сдвигом
2d.1экспоненциальное затухание
3экспоненциальное приближение
4синус
5косинус
6гиперболический синус
7гиперболический косинус
8экспоненциально затухающий
синус
9экспоненциально затухающий
косинус
10корень -го порядка
11натуральный логарифм
12функция Бесселя
первого рода
порядка

13модифицированная функция Бесселя
первого рода
порядка
14функция Бесселя
второго рода
нулевого порядка
15модифицированная функция Бесселя
второго рода,
нулевого порядка
  
16функция ошибок
Примечания к таблице:

Применения преобразования Лапласа

Преобразование Лапласа находит широкое применение во многих областях математики (операционное исчисление), физики и техники:

Связь с другими преобразованиями

Фундаментальные связи

Практически все интегральные преобразования имеют схожую природу и могут получаться одно из другого через выражения соответствия. Многие из них являются частными случаями других преобразований. Далее даны формулы, связывающие преобразования Лапласа с некоторыми другими функциональными преобразованиями.

Преобразование Лапласа — Карсона

Преобразование Лапласа — Карсона (иногда называют просто преобразование Карсона, иногда, не совсем корректно, используют преобразование Карсона, называя его преобразованием Лапласа) получается из преобразования Лапласа путём домножения изображения на комплексную переменную:

Преобразование Карсона широко используется в теории электрических цепей, так как при таком преобразовании размерности изображения и оригинала совпадают, поэтому коэффициенты передаточных функций имеют физический смысл.

Двустороннее преобразование Лапласа

Двустороннее преобразование Лапласа связано с односторонним с помощью следующей формулы:

Преобразование Фурье

Непрерывное преобразование Фурье эквивалентно двустороннему преобразованию Лапласа с комплексным аргументом :

Примечание: в этих выражениях опущен масштабирующий множитель , который часто включается в определения преобразования Фурье.

Связь между преобразованиями Фурье и Лапласа часто используется для того, чтобы определить частотный спектр сигнала или динамической системы.

Преобразование Меллина

Преобразование Меллина и обратное преобразование Меллина связаны с двусторонним преобразованием Лапласа простой заменой переменных. Если в преобразовании Меллина

положим , то получим двустороннее преобразование Лапласа.

Z-преобразование

-преобразование — это преобразование Лапласа решётчатой функции, производимое с помощью замены переменных:

где  — период дискретизации, а  — частота дискретизации сигнала.

Связь выражается с помощью следующего соотношения:

Преобразование Бореля

Интегральная форма преобразования Бореля идентична преобразованию Лапласа, существует также обобщённое преобразование Бореля, с помощью которого использование преобразования Лапласа распространяется на более широкий класс функций.

Библиография

  • Ван дер Поль Б., Бремер Х.  Операционное исчисление на основе двустороннего преобразования Лапласа. М.: Издательство иностранной литературы, 1952. — 507 с.
  • Диткин В. А., Прудников А. П.  Интегральные преобразования и операционное исчисление. М.: Главная редакция физико-математической литературы издательства «Наука», 1974. — 544 с.
  • Диткин В. А., Кузнецов П. И.  Справочник по операционному исчислению: Основы теории и таблицы формул. М.: Государственное издательство технико-теоретической литературы, 1951. — 256 с.
  • Карслоу Х., Егер Д.  Операционные методы в прикладной математике. М.: Издательство иностранной литературы, 1948. — 294 с.
  • Кожевников Н. И., Краснощёкова Т. И., Шишкин Н. Е.  Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. М.: Наука, 1964. — 184 с.
  • Краснов М. Л., Макаренко Г. И.  Операционное исчисление. Устойчивость движения. М.: Наука, 1964. — 103 с.
  • Микусинский Я.  Операторное исчисление. М.: Издательство иностранной литературы, 1956. — 367 с.
  • Романовский П. И.  Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа. М.: Наука, 1980. — 336 с.

См. также

Ссылки

Примечания

  1. В отечественной литературе обозначается также через . См., например,
    Диткин В. А., Кузнецов П. И. Справочник по операционному исчислению: Основы теории и таблицы формул. М.: Государственное издательство технико-теоретической литературы, 1951. — 256 с.
  2. Ващенко-Захарченко М. Е. Символическое исчисление и приложение его к интегрированию линейных дифференциальных уравнений. — Киев, 1862.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии