Нечётными и чётными называются функции, обладающие симметрией относительно изменения знака аргумента. Это понятие важно во многих областях математического анализа, таких как теория степенных рядов и рядов Фурье. Название связано со свойствами степенных функций: функция чётна, когда чётно, и нечётна, когда нечётно.
— пример нечётной функции — пример чётной функции нечётная ни чётная, ни нечётная
Нечётная функция — функция, меняющая значение на противоположное при изменении знака независимой переменной (график её симметричен относительно центра координат).
Чётная функция — функция, не изменяющая своего значения при изменении знака независимой переменной (график её симметричен относительно оси ординат).
Ни чётная, ни нечётная функция(функция общего вида). В эту категорию относят функции, не подпадающие под предыдущие 2 категории.
График чётной функции симметричен относительно оси ординат .
Произвольная функция может быть единственным образом представлена в виде суммы нечётной и чётной функций:
где
Функция — единственная функция, одновременно являющаяся нечётной и чётной.
Сумма, разность и вообще любая линейная комбинация чётных функций чётна, а нечётных — нечётна. Поэтому чётные функции образуют линейное векторное пространство над полем действительных чисел, это же справедливо и для нечётных функций.
(v. p. обозначает главное значение несобственного интеграла по Коши).
Разложение в ряд Маклорена чётной функции содержит только члены с чётными степенями, а нечётной — только с нечётными.
Разложение в ряд Фурье периодической чётной функции содержит только члены с косинусами, а периодической нечётной — только с синусами.
Чётные функции образуют коммутативнуюалгебру над полем действительных чисел. Однако это неверно для нечётных функций, поскольку их множество незамкнуто относительно умножения (произведение двух нечётных функций является чётной функцией).
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии