Ромбододекаэдр | |
---|---|
![]() | |
Тип | Полуправильный многогранник (каталаново тело) |
Грань | Ромб (с острым углом ~70,53 градуса) |
Граней | 12 |
Рёбер | 24 |
Вершин | 14 |
Граней при вершинах | 4 при 6 вершинах, 3 при 8 вершинах |
Группа симметрии | Октаэдрическая (Oh) |
Двойственный многогранник | Кубооктаэдр |
Ромбододека́эдр, ромбочерт (от «ромб», др.-греч. δώδεκᾰ «двенадцать» и ἕδρα «сиденье») — двенадцатигранник, составленный из одинаковых ромбов. У ромбододекаэдра 14 вершин, 6 из которых являются вершинами меньших углов 4 ромбов, а 8 — вершинами 3 ромбов при их больших углах. Острый угол каждого ромба , а тупой . Другими словами: отношение большей диагонали ромба к меньшей равно . Одинаковыми ромбододекаэдрами можно заполнить трёхмерное пространство без промежутков и наложений. Взаимное расположение плоскостей граней ромбододекаэдра называется ромбическим (при октаэдрической симметрии) (и также называется положение самих граней). Такое же положение имеют, например, 12 из 18 квадратных граней ромбокубооктаэдра.
Ромбододекаэдр можно собрать из двух равных кубов, разрезав один из них на 6 одинаковых пирамид, квадратные основания которых — 6 граней куба, а вершины совпадают с его центром, и затем приложив эти пирамиды к 6 граням другого куба.
Площадь и объём ромбододекаэдра вычисляется по формулам:
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .