WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Распределение Вейбулла
Плотность вероятности
Функция распределения
Обозначение
Параметры - коэффициент масштаба,
- коэффициент формы
Носитель
Плотность вероятности
Функция распределения
Математическое ожидание
Медиана
Мода для
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Дифференциальная энтропия
Производящая функция моментов
Характеристическая функция

Распределе́ние Ве́йбулла в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений. Названо в честь Валодди Вейбулла, детально охарактеризовавшего его в 1951, хотя впервые его определил Фреше в 1927, а применено оно было ещё в 1933 для описания распределения размеров частиц.

Определение

Пусть распределение случайной величины задаётся плотностью , имеющей вид:

Тогда говорят, что имеет распределение Вейбулла. Пишут: .

Если величину X принять за наработку до отказа, тогда получается распределение, в котором интенсивность отказов пропорциональна времени. Тогда:

  • k < 1 показывает, что интенсивность отказов уменьшается со временем
  • k = 1 показывает, что интенсивность отказов не меняется со временем
  • k > 1 показывает, что интенсивность отказов увеличивается со временем

В материаловедении коэффициент k известен как модуль Вейбулла.

Свойства

Функция плотности

Вид функции плотности распределения Вейбулла сильно зависит от значения k. Для 0 < k < 1 плотность стремится к бесконечности при и строго убывает. Для k = 1 плотность стремится к 1/λ при и строго убывает. Для k > 1 плотность стремится к 0 при , возрастает до достижения своей моды и убывает после. Интересно отметить, что плотность имеет бесконечный отрицательный угловой коэффициент в x = 0 при 0 < k < 1 , бесконечный положительный угловой коэффициент в x = 0 при 1 < k < 2, и нулевой угловой коэффициент в x = 0 при k > 2. При k = 2 плотность имеет конечный положительный угловой коэффициент в x = 0. При распределение Вейбулла сходится к дельта-функции, центрированной в x = λ. Кроме того, коэффициент асимметрии и коэффициент вариации зависят только от коэффициента формы.

Функция распределения

Функция распределения Вейбулла:

при x ≥ 0, и F(x; k; λ) = 0 при x < 0

Квантиль распределения Вейбулла:

при 0 ≤ p < 1.

Интенсивность отказов h:

Моменты

Производящая функция моментов логарифма случайной величины, имеющей распределение Вейбулла

где Γ — это гамма-функция. Аналогично, Характеристическая функция логарифма X задаётся

Моменты случайной величины , имеющей распределение Вейбулла имеют вид

, где  — гамма-функция,

откуда

,
.

Коэффициент асимметрии задаётся функцией

Коэффициент эксцесса

где , так же может быть записан:

Производящая функция моментов

Существует множество выражений для производящей функции моментов самой

Так же можно работать непосредственно с интегралом

Если коэффициент k предполагается рациональным числом, выраженным k = p/q, где p и q целые, то интеграл может быть вычислен аналитически.[1] С заменой t на -t, получается

где G — это G-функция Мейера.

Информационная энтропия

Информационная энтропия задаётся таким образом

где  — это Постоянная Эйлера — Маскерони.

Оценка коэффициентов

Наибольшее правдоподобие

Оценка максимального правдоподобия для коэффициента

Для

Условная функция надёжности Вейбулла

Для 2-х параметрического распределения Вейбулла функция имеет вид:

или

Для 3-х параметрического:

Она называется условной, потому что показывает вероятность того, что объект проработает ещё времени при условии, что он уже проработал .

График Вейбулла

Данные распределения Вейбулла визуально могут быть оценены с использованием графика Вейбулла[2] . Это график типа Q-Q выборочной функции распределения со специальными осями. Оси — и Причина изменения переменных в том, что выборочная функция распределения Вейбулла может быть представлена в линейном виде

Поэтому если данные получены из распределения Вейбулла, на графике Вейбулла можно ожидать прямую линию.

Есть множество способов получения выборочной функции распределения из данных: один из методов заключается в том, чтобы получить вертикальную координату каждой точки, используя , где  — это ранг точки данных, а  — это общее количество точек.[3]

Использование

Распределение Вейбулла используется:

Соответствие функции распределения Вейбулла выпавшей за один день годовой норме дождей
  • В прогнозировании погоды
    • Для описания распределения скорости ветра как распределения, обычно совпадающего с распределением Вейбулла в ветроэнергетике
  • В радиолокационных системах для моделирования дисперсии уровня принимаемого сигналов, создаваемой некоторыми типами клаттеров
  • В моделировании замирания сигнала в беспроводных коммуникациях
  • В прогнозировании технологических изменений
  • В гидрологии распределение Вейбулла применимо к экстремальным событиям, таким как выпадение годовой нормы дождей за день или разливу реки. На рисунке показано такое соответствие, а также 90 % доверительный интервал, основанный на биномиальном распределении.
  • В описании размера частиц, полученных путём размельчения, помола или дробления
  • Из-за доступности используется в электронных таблицах, когда основное поведение в действительности лучше описывается распределением Эрланга

Связь с другими распределениями

  • 3-параметрическое распределение Вейбулла. Имеет функцию плотности

где и f(x; k, λ, θ) = 0 при x < θ, где  — коэффициент формы,  — коэффициент масштаба и  — коэффициент сдвига распределения. Когда θ=0, оно сводится к 2-х параметрическому распределению Вейбулла.

  • 1-параметрическое распределение Вейбулла. Выводится предполагая и :

Если  — экспоненциальное распределение для параметра , то случайная величина имеет распределение Вейбулла . Для доказательства рассмотрим функцию распределения :

Полученная функция — функция распределения для распределения Вейбулла.

.
  • С распределением Фреше: если , то .
  • С распределением Гумбеля: если , то .
  • Распределение Рэлея — частный случай распределения Вейбулла при и [4]
  • Распределение Вейбулла является частным случаем обобщённого распределения экстремальных значений[5]
  • Впервые распределение Вейбулла было применено для описания распределения размера частиц. Широко использовалось в обогащении полезных ископаемых при измельчении. В этом контексте

функция распределения имеет вид

где

: Размер частицы
: 80-й процентиль распределения размера частиц
: Коэффициент, описывающий размах распределения

Примечания

  1. См. (Cheng, Tellambura & Beaulieu 2004) для случая целого k, и (Sagias & Karagiannidis 2005) в случае рационального.
  2. график Вейбулла
  3. Wayne Nelson (2004) Applied Life Data Analysis. Wiley-Blackwell ISBN 0-471-64462-5
  4. Rayleigh Distribution — MATLAB & Simulink — MathWorks Australia
  5. Всемирная Метеорологическая Организация. Руководство по гидрологической практике. — 6. — Швейцария, 2012. — Т. 2. — С. 165. ISBN 978-92-63-40168-7..

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии