WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Кривая Госпера, известная также как кривая Пеано-Госпера[1], названная именем Била Госпера[en], — это заполняющая пространство кривая. Кривая является фрактальной кривой, подобной кривым дракона и Гильберта.

Четвёртая стадия кривой ГоспераЛоманая линия от красной точки до зелёной показывает один шаг построения кривой Госпера.

Алгоритм

Система Линденмайера

Кривую Госпера можно можно представить с помощью системы Линденмайера[en] со следующими правилами:

  • Угол: 60°
  • Аксиома:
  • Правила подстановки:

В этом случае A и B означают движение вперёд, + означает поворот влево на 60º, а — означает поворот на 60º вправо с использованием «черепашьего» стиля программирования, как в Лого.

Лого

Программа на Лого для рисования кривой Госпера с использованием черепашьей графики (онлайн-версия):

to rg :st :ln
make "st :st - 1
make "ln :ln / sqrt 7
if :st > 0 [rg :st :ln rt 60 gl :st :ln  rt 120 gl :st :ln lt 60 rg :st :ln lt 120 rg :st :ln rg :st :ln lt 60 gl :st :ln rt 60]
if :st = 0 [fd :ln rt 60 fd :ln rt 120 fd :ln lt 60 fd :ln lt 120 fd :ln fd :ln lt 60 fd :ln rt 60]
end

to gl :st :ln
make "st :st - 1
make "ln :ln / sqrt 7
if :st > 0 [lt 60 rg :st :ln rt 60 gl :st :ln gl :st :ln rt 120 gl :st :ln rt 60 rg :st :ln lt 120 rg :st :ln lt 60 gl :st :ln]
if :st = 0 [lt 60 fd :ln rt 60 fd :ln fd :ln rt 120 fd :ln rt 60 fd :ln lt 120 fd :ln lt 60 fd :ln]
end

Программу можно запустить, например, командой rg 4 300 или gl 4 300.

Свойства

Заполненные кривой фрагменты плоскости называются островами Госпера. Несколько первых итераций приведены ниже:

Остров Госпера может замостить плоскость. Фактически, семь копий острова Госпера можно соединить вместе с образованием похожей фигуры, но увеличенной на множитель √7 во всех направлениях. Как видно из рисунка ниже, эта операция приводит к уменьшенной версии следующей итерации кривой. Продолжение процесса бесконечно даёт замощение плоскости. Сама кривая может быть равным образом расширена на бесконечность с заполнением всей плоскости.

См. также

Примечания

  1. Weisstein, Eric W. Peano-Gosper Curve. MathWorld. Проверено 31 октября 2013.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии