WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
График многочлена 4-й степени с четырьмя корнями и тремя критическими точками.

Уравнение четвёртой степени — в математике алгебраическое уравнение вида:

Четвёртая степень для алгебраических уравнений является наивысшей, при которой существует аналитическое решение в радикалах в общем виде (то есть при любом значении коэффициентов).

Так как является многочленом чётной степени, она имеет один и тот же предел при стремлении к плюс и к минус бесконечности. Если , то функция возрастает до плюс бесконечности с обеих сторон, таким образом, функция имеет глобальный минимум. Аналогично, если , то функция убывает до минус бесконечности с обеих сторон, таким образом, функция имеет глобальный максимум

Теорема Виета для уравнения четвёртой степени

Корни уравнения четвёртой степени связаны с коэффициентами следующим образом:

История

Уравнения четвёртой степени впервые были рассмотрены древнеиндийскими математиками между IV в. до н. э. и II в. н. э.

Лодовико Феррари приписывается получение решения уравнения четвёртой степени в 1540 году, но его работа опиралась на решение кубического уравнения, которого у него не было, поэтому сразу это решение не было опубликовано,[1] а было опубликовано только в 1545 вместе с решением кубического уравнения наставника Феррари — Джероламо Кардано в книге «Великое искусство»[2].

То, что это наибольшая степень уравнения, для которого можно указать общую формулу решения, было доказано в теореме Абеля — Руффини в 1824. Записки, оставленные Галуа, позже привели к элегантной теории корней многочленов, одним из результатов которой была эта теорема.[3]

Решения

Через резольвенту

Решение уравнения четвёртой степени

сводится к решению кубической резольвенты

Корни резольвенты связаны с корнями исходного уравнения (которые и нужно найти) следующими соотношениями:

Корни резольвенты могут быть решены по формуле Кардано. Три формулы соотношений между и вместе с исходным уравнением дают систему из 4 алгебраических уравнений с 4 неизвестными, которая легко решается.

Решение Декарта — Эйлера

В уравнении четвёртой степени

сделаем подстановку , получим уравнение в следующем виде (оно называется «неполным»):

где

Корни такого уравнения равны одному из следующих выражений:

в которых сочетания знаков выбираются таким образом, чтобы выполнялось следующее соотношение:

причём  — это корни кубического уравнения

Решение Феррари

Решение уравнения четвёртой степени вида может быть найдено по методу Феррари. Если  — произвольный корень кубического уравнения

(2)

(резольвенты основного уравнения), то четыре корня исходного уравнения находятся как корни двух квадратных уравнений

где подкоренное выражение в правой части является полным квадратом.

Биквадратное уравнение

Биквадратное уравнение[4] — уравнение четвёртой степени вида , где  — заданные комплексные числа и . Подстановкой оно сводится к квадратному уравнению относительно .

Четыре его корня находятся по формуле

Возвратные уравнения четвёртой степени

Возвратное уравнение четвёртой степени является также относительно легко решаемым: для такого, что , решение находится приведением к виду:

,

После замены ищется решение квадратного уравнения , а затем — квадратного уравнения .

Примечания

  1. Ferrari biography
  2. «Великое искусство» (Ars magna, 1545)
  3. Стюарт, Ян. Теория Галуа, издание третье (Chapman & Hall/CRC Mathematics, 2004) (англ.)
  4. В литературе до середины XX века биквадратным также могли называть уравнение четвёртой степени общего вида

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии