CD86 — мембранный белок суперсемейства иммуноглобулинов, экспрессированный на антиген-представляющих клетках, который действует как ко-стимулирующий сигнал для активации и выживания T-лимфоцитов. Продукт гена CD86[1].
Функция
Белок CD86 входит в суперсемейство иммуноглобулинов. Играет роль ко-стимулирующщго сигнала, необходимого для пролиферации T-клеток и продукции интерлейкина-2. Является лигандом для рецепторов CD28 и CTLA-4. Может быть критически важным на ранних этапах активации T-клеток и ко-стимуляции наивных T-клеток, включая в момент выбора пути между иммунным ответом и отсутствием ответа (анергией), который, как правило, происходит в первые 24 часа после активации лимфоцита. Изоформа 2 белка блокирует образование кластера CD86 и, таким образом, действует как отрицательный регулятор клеточной активации.
Кроме этого, CD86 является, в свою очередь, рецептором для аденовирусов подгруппы B.
Тканевая локализация
Белок экспрессируют B-клетки и моноциты.
Структура и взаимодействия
CD86 состоит из 329 аминокислот, молекулярная масса 37,7 кДа. Является гомодимером. Содержит единственный трансмембранный фрагмент. Молекула содержит 2 иммуноглобулиновых домена (Ig-подобные домены типа C2 и V) и, таким образом, относится к белкам суперсемейства иммуноглобулинов.
↑ Chen C, Gault A, Shen L, Nabavi N (May 1994). “Molecular cloning and expression of early T cell costimulatory molecule-1 and its characterization as B7-2 molecule”. Journal of Immunology. 152 (10): 4929—36. PMID7513726.
Литература
Davila S, Froeling FE, Tan A, Bonnard C, Boland GJ, Snippe H, Hibberd ML, Seielstad M (April 2010). “New genetic associations detected in a host response study to hepatitis B vaccine”. Genes and Immunity. 11 (3): 232—8. DOI:10.1038/gene.2010.1. PMID20237496.
Pan XM, Gao LB, Liang WB, Liu Y, Zhu Y, Tang M, Li YB, Zhang L (July 2010). “CD86 +1057 G/A polymorphism and the risk of colorectal cancer”. DNA and Cell Biology. 29 (7): 381—6. DOI:10.1089/dna.2009.1003. PMID20380573.
Dalla-Costa R, Pincerati MR, Beltrame MH, Malheiros D, Petzl-Erler ML (August 2010). “Polymorphisms in the 2q33 and 3q21 chromosome regions including T-cell coreceptor and ligand genes may influence susceptibility to pemphigus foliaceus”. Human Immunology. 71 (8): 809—17. DOI:10.1016/j.humimm.2010.04.001. PMID20433886.
Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, Gaunt TR, Pallas J, Lovering R, Li K, Casas JP, Sofat R, Kumari M, Rodriguez S, Johnson T, Newhouse SJ, Dominiczak A, Samani NJ, Caulfield M, Sever P, Stanton A, Shields DC, Padmanabhan S, Melander O, Hastie C, Delles C, Ebrahim S, Marmot MG, Smith GD, Lawlor DA, Munroe PB, Day IN, Kivimaki M, Whittaker J, Humphries SE, Hingorani AD (November 2009). “Gene-centric association signals for lipids and apolipoproteins identified via the HumanCVD BeadChip”. American Journal of Human Genetics. 85 (5): 628—42. DOI:10.1016/j.ajhg.2009.10.014. PMC2775832. PMID19913121.
Kim SH, Lee JE, Kim SH, Jee YK, Kim YK, Park HS, Min KU, Park HW (December 2009). “Allelic variants of CD40 and CD40L genes interact to promote antibiotic-induced cutaneous allergic reactions”. Clinical and Experimental Allergy. 39 (12): 1852—6. DOI:10.1111/j.1365-2222.2009.03336.x. PMID19735272.
Liu Y, Liang WB, Gao LB, Pan XM, Chen TY, Wang YY, Xue H, Zhang LS, Zhang L (November 2010). “CTLA4 and CD86 gene polymorphisms and susceptibility to chronic obstructive pulmonary disease”. Human Immunology. 71 (11): 1141—6. DOI:10.1016/j.humimm.2010.08.007. PMID20732370.
Ma XN, Wang X, Yan YY, Yang L, Zhang DL, Sheng X, Liu XM, Huang H, Dai J, Zhong YJ, Liao LC (June 2010). “Absence of association between CD86 +1057G/A polymorphism and coronary artery disease”. DNA and Cell Biology. 29 (6): 325—8. DOI:10.1089/dna.2009.0987. PMID20230296.
Ishizaki Y, Yukaya N, Kusuhara K, Kira R, Torisu H, Ihara K, Sakai Y, Sanefuji M, Pipo-Deveza JR, Silao CL, Sanchez BC, Lukban MB, Salonga AM, Hara T (April 2010). “PD1 as a common candidate susceptibility gene of subacute sclerosing panencephalitis”. Human Genetics. 127 (4): 411—9. DOI:10.1007/s00439-009-0781-z. PMID20066438.
Chang TT, Kuchroo VK, Sharpe AH (2002). “Role of the B7-CD28/CTLA-4 pathway in autoimmune disease”. Current Directions in Autoimmunity. 5: 113—30. DOI:10.1159/000060550. PMID11826754.
Grujic M, Bartholdy C, Remy M, Pinschewer DD, Christensen JP, Thomsen AR (August 2010). “The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus”. Journal of Immunology. 185 (3): 1730—43. DOI:10.4049/jimmunol.0903894. PMID20601595.
Quaranta MG, Mattioli B, Giordani L, Viora M (November 2006). “The immunoregulatory effects of HIV-1 Nef on dendritic cells and the pathogenesis of AIDS”. FASEB Journal. 20 (13): 2198—208. DOI:10.1096/fj.06-6260rev. PMID17077296.
Schuurhof A, Bont L, Siezen CL, Hodemaekers H, van Houwelingen HC, Kimman TG, Hoebee B, Kimpen JL, Janssen R (June 2010). “Interleukin-9 polymorphism in infants with respiratory syncytial virus infection: an opposite effect in boys and girls”. Pediatric Pulmonology. 45 (6): 608—13. DOI:10.1002/ppul.21229. PMID20503287.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии