Число Капрекара для данной системы счисления — это неотрицательное целое число, квадрат которого в этой системе можно разбить на две части, сумма которых даёт исходное число. Например, 45 является числом Капрекара, поскольку 452 = 2025 и 20 + 25 = 45. Числа Капрекара названы по имени Д. Р. Капрекара.
Пусть X — это неотрицательное целое. X является числом Капрекара по основанию b, если существует неотрицательные числа n, A и положительное B, удовлетворяющие условиям:
Заметим, что X является также числом Капрекара по основанию bn для данного n. В более узком смысле мы можем определить множество K(N) для данного целого числа N как множество целых чисел X, для которых [1]
Каждое число Капрекара X по основанию b тогда попадает в одно из множеств K(b), K(b2), K(b3),….
297 является числом Капрекара по основанию 10, поскольку 2972 = 88209, которое можно разбить на 88 и 209 и 88 + 209 = 297. По соглашению, вторая часть может начинаться с 0, но не должна быть нулевой. Например, 999 является числом Капрекара по основанию 10, поскольку 9992 = 998001, которое можно разбить на 998 и 001, 998 + 001 = 999. А вот 100 числом Капрекара не является, хотя 1002 = 10000 и 100 + 00 = 100, вторая часть равна нулю.
Несколько первых чисел Капрекара по основанию 10:
В частности, 9, 99, 999… являются числами Капрекара. Более обще, для любого основания b существует бесконечно много чисел Капрекара, включая все числа вида bn − 1.
По основанию 12 числа Капрекара равны
По основанию 16 числа Капрекара равны
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .