Постоянная Капрекара — число, равное 6174.
Число 6174 имеет следующую особенность. Выберем любое четырёхзначное число n, больше 1000, в котором не все цифры одинаковы (всюду предполагается использование десятичной системы счисления, если не оговорено иное). Расположим цифры сначала в порядке возрастания, затем в порядке убывания. Вычтем из большего меньшее. Производя перестановки цифр и вычитания, нули следует сохранять. Описанное действие назовём функцией Капрекара K(n). Повторяя этот процесс с получающимися разностями, не более чем за семь шагов получим число 6174, которое будет затем воспроизводить само себя.
Это свойство числа 6174 было открыто в 1949 году индийским математиком Д. Р. Капрекаром, в честь которого оно и получило своё название.
Для числа 3412:
Для числа 1100:
Для числа 6174:
Аналог постоянной Капрекара для двузначных чисел — число 9. Среди трёхзначных чисел аналогичным свойством обладает 495 (процедура сходится к нему максимум через шесть итераций для любого трёхзначного числа без повторяющихся цифр). Для чисел с бо́льшим, чем 4, числом знаков, преобразование Капрекара в большинстве случаев рано или поздно приводит к циклическим повторениям чисел, но не к неподвижной точке n = K(n). Для пятизначных чисел неподвижной точки не существует. Имеется два шестизначных числа, являющихся неподвижными точками преобразования Капрекара (549 945 и 631 764), семизначных чисел с таким свойством нет.
Любое число вида 633…331766…664 (где количество цифр в последовательностях шестёрок и троек одинаково) является неподвижной точкой n = K(n).[источник не указан 530 дней] Сама постоянная Капрекара тоже является числом этого вида. Однако не любая неподвижная точка может быть записана в таком виде.
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .