WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Постоянная Капрекара — число, равное 6174.

Функция Капрекара

Число 6174 имеет следующую особенность. Выберем любое четырёхзначное число n, больше 1000, в котором не все цифры одинаковы (всюду предполагается использование десятичной системы счисления, если не оговорено иное). Расположим цифры сначала в порядке возрастания, затем в порядке убывания. Вычтем из большего меньшее. Производя перестановки цифр и вычитания, нули следует сохранять. Описанное действие назовём функцией Капрекара K(n). Повторяя этот процесс с получающимися разностями, не более чем за семь шагов получим число 6174, которое будет затем воспроизводить само себя.

Это свойство числа 6174 было открыто в 1949 году индийским математиком Д. Р. Капрекаром, в честь которого оно и получило своё название.

Примеры

Для числа 3412:

4321  1234 = 3087 
8730  378 = 8352 
8532  2358 = 6174;

Для числа 1100:

1100  11 = 1089 
9810  189 = 9621 
9621  1269 = 8352 
8532  2358 = 6174.

Для числа 6174:

7641  1467 = 6174.

Обобщения

Аналог постоянной Капрекара для двузначных чисел — число 9. Среди трёхзначных чисел аналогичным свойством обладает 495 (процедура сходится к нему максимум через шесть итераций для любого трёхзначного числа без повторяющихся цифр). Для чисел с бо́льшим, чем 4, числом знаков, преобразование Капрекара в большинстве случаев рано или поздно приводит к циклическим повторениям чисел, но не к неподвижной точке n = K(n). Для пятизначных чисел неподвижной точки не существует. Имеется два шестизначных числа, являющихся неподвижными точками преобразования Капрекара (549 945 и 631 764), семизначных чисел с таким свойством нет.

Любое число вида 633…331766…664 (где количество цифр в последовательностях шестёрок и троек одинаково) является неподвижной точкой n = K(n).[источник не указан 530 дней] Сама постоянная Капрекара тоже является числом этого вида. Однако не любая неподвижная точка может быть записана в таком виде.

См. также

Ссылки

  • Последовательность A099009 в OEIS: последовательность неподвижных точек функции Капрекара = Fixed points of the Kaprekar mapping
  • Weisstein, Eric W. Kaprekar Routine (англ.) на сайте Wolfram MathWorld.


Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии