WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Числа Шрёдера (нем. Schröder) в комбинаторике описывают количества путей из левого нижнего угла квадратной решётки n×n в противоположный по диагонали угол, используя только ходы вверх, вправо или вверх-вправо («ходом короля»), с дополнительным условием, что пути не поднимаются выше упомянутой диагонали. Именно это дополнительное условие отличает эту последовательность от чисел Деланноя. Названы в честь немецкого математика Эрнеста Шрёдера.

Последовательность чисел Шрёдера начинается так:

1, 2, 6, 22, 90, 394, 1806, 8558, …. последовательность A006318 в OEIS.

Ричард Стэнли, профессор Массачусетского политехнического института, утверждает, что Гиппарх посчитал 10-е число Шрёдера 1037718, не упоминая правда способ, каким к нему пришёл.

Пример

На рисунке ниже приведены 6 путей Шрёдера на сетке 2 × 2:

Эквивалентные определения

Числа Шрёдера считают количество путей из точки (0, 0) в (2n, 0), использующих только шаги вправо-вверх или вправо-вниз (шаги (1, 1) или (1, —1)) или двойные шаги вправо (2, 0), которые не опускаются ниже оси x:

Также числа Шрёдера равны количество способов разбить прямоугольник в n + 1 меньших прямоугольников, используя n разрезов; с ограничением, что есть n точек внутри прямоугольника, никакие две из которых не лежат на одной прямой, параллельной сторонам прямоугольника, и каждый разрез проходит через одну из этих точек и делит только один прямоугольник на два. Рисунок показывает 6 способов разрезания на 3 прямоугольника с помощью 2 разрезов:

Свойства

  • Числа Шрёдера удовлетворяют рекуррентному соотношению:

Приложения

Числа Шрёдера могут быть использованы для вычисления количества разбиений ацтекского бриллианта.

См. также

Ссылки

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии