WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Обручённые числа или квази-дружественные числа это два положительных целых числа, для которых сумма собственных делителей каждого числа на 1 больше, чем второе число. Другими слова, (mn) — это пара обручённых чисел если s(m) = n + 1 и s(n) = m + 1, где s(n) это сумма собственных делителей числа n (аликвотная сумма от n). Эквивалентным условием будет σ1(m) = σ1(n) = m + n + 1, где σ1(n) — сумма всех делителей числа n.

Первые несколько пар обручённых чисел, которые составляют последовательность A005276 в OEIS: (48, 75), (140, 195), (1050, 1925), (1575, 1648), (2024, 2295), (5775, 6128).

Не имеют большого значения для теории чисел, однако являются интересным элементом занимательной математики.

Факты

  • Все известные пары обручённых чисел имеют противоположную чётность. Неизвестно, существует ли пара обручённых чисел одинаковой чётности. Любая пара одинаковой чётности должна превышать 1010.
  • Иногда слегка избыточные числа считают частным случаем обручённых чисел, как числа обручённые сами с собой.
  • Неизвестно, конечно или бесконечно количество пар обручённых чисел.

См. также

Источники

    • Hagis, Peter, jr; Lord, Graham (1977). “Quasi-amicable numbers”. Math. Comput. 31: 608—611. DOI:10.1090/s0025-5718-1977-0434939-3. ISSN 0025-5718. Zbl 0355.10010.
    • Handbook of number theory I. — Dordrecht : Springer-Verlag, 2006. — P. 113. ISBN 1-4020-4215-9.
    • Sándor, Jozsef. Handbook of number theory II / Jozsef Sándor, Crstici. — Dordrecht : Kluwer Academic, 2004. — P. 68. ISBN 1-4020-2546-7.

    Ссылки

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии