WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

В теории чисел простым числом Вольстенхольма называется всякое простое число, удовлетворяющее усиленному сравнению из теоремы Вольстенхольма. При этом исходному сравнению из теоремы Вольстенхольма удовлетворяют все простые числа, кроме 2 и 3. Простые Вольстенхольма названы в честь математика Джозефа Вольстенхольма, который первым доказал теорему в XIX веке.

Интерес к этим простым возник по причине их связи с великой теоремой Ферма.

Известны только два простых числа Вольстенхольма — это 16843 и 2124679 (последовательность A088164 в OEIS). Других простых чисел Вольстенхольма, меньших 109, нет[1].

Определения

Нерешённые проблемы математики: Имеются ли простые числа Вольстенхольма, отличные от 16843 и 2124679?

Простое число Вольстенхольма может быть определено несколькими эквивалентными путями.

Через биномиальные коэффициенты

Простое число Вольстенхольма — это простое число, удовлетворяющее сравнению

где выражение в левой части обозначает биномиальный коэффициент[2]. Сравните с теоремой Вольстенхольма, которая утверждает, что для любого простого p > 3 выполняется следующее сравнение:

Через числа Бернулли

Простое число Вольстенхольма — это простое число p, делящее (без остатка) числитель числа Бернулли Bp−3[3][4][5]. Таким образом, простые числа Вольстенхольма представляют собой подмножество иррегулярных простых чисел.

Через иррегулярные пары

Простое число Вольстенхольма p — это простое число, такое, что (p, p-3) является иррегулярной парой[6][7].

Через гармонические числа

Простое число Вольстенхольма p — это простое число, такое, что[8]

то есть числитель гармонического числа делится на p3.

Поиск и текущее состояние

Поиск простых чисел Вольстенхольма начался в 1960-х годах и продолжается до сих пор. Последний результат был опубликован в 2007 году. Первое простое число Вольстенхольма 16843 было найдено в 1964 году, хотя результат и не был опубликован в явном виде[9]. Находка 1964 года была потом независимо подтверждена в 1970-х годах. Это число оставалось единственным известным примером таких чисел почти 20 лет, пока не было объявлено об обнаружении второго простого числа Вольстенхольма 2124679 в 1993 году[10]. В то время вплоть до 1,2⋅107 не было найдено ни одного числа Вольстенхольма, кроме упомянутых двух[11]. Позднее граница была поднята до 2⋅108 Макинтошем (McIntosh) в 1995 году[4], а Тревисан (Trevisan) и Вебер (Weber) смогли достичь 2,5⋅108[12]. Последний результат зафиксирован в 2007 году — до 1⋅109 так и не нашли простых чисел Вольстенхольма[13].

Ожидаемое количество

Существует гипотеза, что простых чисел Вольстенхольма бесконечно много. Предполагается также, что количество не превосходящих x простых чисел Вольстенхольма должно быть порядка ln ln x, где ln обозначает натуральный логарифм. Для любого простого числа p ≥ 5 частным Вольстенхольма называется

Ясно, что p является простым числом Вольстенхольма тогда и только тогда, когда Wp ≡ 0 (mod p). Из эмпирических наблюдений можно предположить, что остаток Wp по модулю p равномерно распределён на множестве {0, 1, …, p-1}. По этим причинам вероятность получения определённого остатка (например, 0) должна быть около 1/p[4].

См. также

Примечания

  1. Weisstein, Eric W. Wolstenholme prime (англ.) на сайте Wolfram MathWorld.
  2. Cook, J. D. Binomial coefficients. Проверено 21 декабря 2010. Архивировано 29 января 2013 года.
  3. Clarke & Jones, 2004, p. 553
  4. 1 2 3 McIntosh, 1995, p. 387.
  5. Zhao, 2008, p. 25
  6. Johnson, 1975, p. 114.
  7. Buhler et al. (1993), p. 152.
  8. Zhao, 2007, p. 18.
  9. Селфридж (Selfridge) и Поллак (Pollack) опубликовали первое простое число Вольстенхольма в Selfridge & Pollack, 1964, p. 97 (см. ).
  10. Ribenboim, 2004, p. 23.
  11. Zhao, 2007, p. 25.
  12. Trevisan & Weber (2001), p. 283–284.
  13. McIntosh & Roettger (2007), p. 2092.

Литература

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии