Однородное уравнение теплопроводности с однородными граничными условиями
Рассмотрим следующую задачу:
|
Требуется найти функцию
для
.
Представим искомую функцию в виде произведения
Затем предполагаемую форму решения подставим в исходное уравнение, получим
Разделим выражение на
:
Так как в левой части уравнения у нас находится функция зависящая только от
, а в правой — только от
, то, фиксируя любое значение
в правой части, получаем, что для любого
значение левой части уравнения постоянно. Таким же образом можно убедиться, что и правая часть постоянна, то есть равна некой константе
(минус взят для удобства). Таким образом, мы получаем два обыкновенных линейных дифференциальных уравнения:
Обратим внимание на граничные условия исходной задачи и подставим в них предполагаемый вид уравнения, получим:
откуда
(
, так как в противном случае мы имели бы решение
, а мы ищем только нетривиальные решения).
С учетом полученных граничных условий мы получаем задачу Штурма — Лиувилля:
Её решение сводится к решению линейного дифференциального уравнения и рассмотрению трёх случаев:
- В этом случае общий вид решения будет следующим:
- Подставив граничные условия, мы убедимся, что решение будет
, а мы ищем только нетривиальные решения, следовательно, этот случай не подходит.
- Общий вид решения
- Несложно убедиться, что этот вариант нам также не подходит.
- Общий вид решения
- Подставим граничные условия:
- Так как мы ищем только нетривиальные решения,
нам не подходит, следовательно
- Отсюда
C учетом найденных
, выведем общее решение линейного дифференциального уравнения
Должен получиться ответ
Теперь всё готово для того, чтобы записать решение исходной задачи:
В результате у нас получилось бесконечное количество частных решений уравнения. Все эти частные решения линейно независимы, то есть линейная комбинация любого количества решений равна нулю, только если все коэффициенты при них равны нулю. Поэтому логично предположить, что суммируя все частные решения по
от единицы до бесконечности, мы получим общее решение исходной задачи.
Осталось определить значение константы
(зависящей от
) из начального условия
Для того, чтобы определить значение
, необходимо разложить функцию
в ряд Фурье:
Получаем:
Откуда общее решение:
В курсе математической физики доказывается, что полученный ряд удовлетворяет всем условиям данной задачи, то есть функция
дифференцируема (и ряд сходится равномерно), удовлетворяет уравнению в области определения и непрерывна в точках границы этой области.
Неоднородное уравнение теплопроводности с однородными граничными условиями
Рассмотрим следующую задачу для неоднородного уравнения:
|
Пусть
Тогда, пользуясь очевидным соотношением
, перепишем исходное уравнение как:
Решим последнее линейное неоднородное уравнение методом вариации постоянной. Сначала найдём общее решение однородного линейного уравнения
В общем решении заменим постоянную
на переменную
и подставим в исходное уравнение.
Из начального условия получаем:
С учетом условия для
, получаем
Так как
то
, очевидно, является коэффициентом ряда Фурье, и равен
В результате, общая формула такова:
Общая первая краевая задача
Во многих случаях удаётся решить неоднородное уравнение теплопроводности с неоднородными краевыми и начальным условиями
|
с помощью методов, описанных выше и следующего несложного приёма. Представим искомую функцию в виде суммы:
Найдём функцию
:
Таким образом, исходная задача свелась к следующей:
После того, как мы найдём функцию
, искомую функцию найдём по формуле