Определение
Рассмотрим общий вид скалярного дифференциального уравнения в частных производных второго порядка относительно функции
:
При этом уравнение записано в симметричном виде, то есть:
. Тогда эквивалентное уравнение в виде квадратичной формы:
,
где
.
Матрица
называется матрицей главных коэффициентов.
Если сигнатура полученной формы равна
, то есть матрица
имеет одно собственное значение равное нулю и
собственных значений имеют одинаковый знак, то уравнение относят к параболическому типу[1].
Другое, эквивалентное определение: уравнение называется параболическим, если оно представимо в виде:
,
где:
— эллиптический оператор,
.
Решение параболических уравнений
Для нахождения единственного решения уравнение рассматривается в совокупности с начальными и краевыми условиями. Поскольку по времени уравнение имеет первый порядок, то начальное условие накладывается одно: на искомую функцию.
Принцип максимума
Для параболического уравнения вида:
Решение
принимает своё максимальное значение либо при
, либо на границе области
.
Примеры параболических уравнений
- Уравнения описывающие процессы конвекции и диффузии, в том числе уравнение диффузии и его частный случай — уравнение теплопроводности.
- Система уравнений Навье-Стокса, описывающее движение жидкости и газов является системой параболических уравнений с дивергентными ограничениями.
- Для некоторых типов сред из уравнений Максвелла можно получить параболические уравнения относительно векторов
или
.[3]
Примечания
- ↑ Тихонов А.Н, Самарский А.А. Уравнения математической физики (5-е изд.).. — Москва: Наука, 1977.
- ↑ Л.К. Мартинсон, Ю.И. Малов. Дифференциальные уравнения математической физики. — Москва: МГТУ имени Н.Э. Баумана, 2002. — 368 с. — ISBN 5-7038-1270-4.
- ↑ Соловейчик Ю.Г., Рояк М.Э., Персова М.Г. Метод конечных элементов для скалярных и векторных задач. — Новосибирск: НГТУ, 2007. — 896 с. — ISBN 978-5-7782-0749-9.
 |
---|
Виды уравнений | |
---|
Типы уравнений | |
---|
Краевые условия | |
---|
Уравнения математической физики | |
---|
Методы решения |  |
---|
Сеточные методы | Конечноэлементные методы | |
---|
Другие методы | |
---|
|
---|
Не сеточные методы | |
---|
|
---|
Исследование уравнений | |
---|
Связанные темы | |
---|
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .