Уравнение Рариты — Швингера — дифференциальное уравнение, описывающее частицы со спином 3/2. Оно было получено Раритой и Швингером в 1941 году[1].
Уравнение имеет вид:
либо, в натуральных единицах:
где:
— символ Леви-Чивиты,
— масса частицы,
— матрицы Дирака.
Уравнение Рариты—Швингера может быть получено из уравнения Эйлера — Лагранжа с плотностью лагранжиана:
Примечания
 |
---|
Виды уравнений | |
---|
Типы уравнений | |
---|
Краевые условия | |
---|
Уравнения математической физики | |
---|
Методы решения |  |
---|
Сеточные методы | Конечноэлементные методы | |
---|
Другие методы | |
---|
|
---|
Не сеточные методы | |
---|
|
---|
Исследование уравнений | |
---|
Связанные темы | |
---|
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .