Правильный 65537-угольник | |
---|---|
![]() Правильный 65537-угольник визуально неотличим от окружности (при разрешении в 1000 пикселей отличие от окружности будет меньше одной миллионной пикселя). |
Правильный 65537-угольник (шестьдеся̀тпятьты̀сячпятисо̀ттридцатисемиуго́льник[1]) — правильный многоугольник с 65 537 углами и 65 537 сторонами. По причине малости центрального угла в графическом изображении правильный 65537-угольник почти не отличается от окружности (см. иллюстрацию справа).
Правильный 65537-угольник представляет интерес, поскольку 65 537 является простым числом Ферма, что делает возможным построение данного многоугольника с помощью циркуля и линейки. Эта задача была решена Иоганном Густавом Гермесом в 1894 году.
Отличительная особенность правильного 65537-угольника — это тот факт, что его возможно построить, используя только циркуль и линейку.
Число 65 537 — это самое большое известное простое число Ферма:
Гауссом в 1796 году было доказано, что правильный n-угольник можно построить циркулем и линейкой, если нечётные простые делители n являются различными числами Ферма. В 1836 году П. Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует. Ныне это утверждение известно как теорема Гаусса — Ванцеля.
В 1894 году Иоганн Густав Гермес после более чем десятилетних исследований нашёл способ построения правильного 65537-угольника и описал его в рукописи размером более 200 страниц[2] (оригинал рукописи хранится в библиотеке Гёттингенского университета).
![]() | Один слишком навязчивый аспирант довёл своего руководителя до того, что тот сказал ему: «Идите и разработайте построение правильного многоугольника с 65537 сторонами». Аспирант удалился, чтобы вернуться через 20 лет с соответствующим построением[3].Дж. Литлвуд | ![]() |
Центральный угол равен .
Внутренний угол равен .
Следующие соображения могут служить для иллюстрации пропорций практически непредставимой фигуры:
Рассмотрим треугольник, одной стороной которого является указанная жердь, второй стороной — перпендикуляр, опущенный от приподнятого конца жерди на поверхность, где она лежала, а третьей стороной — отрезок от основания перпендикуляра до покоящегося конца жерди. Считая, что жердь подняли на один сантиметр, найдём, какой длины она должна быть, чтобы образовать с поверхностью угол , равный центральному углу правильного 65537-угольника: он будет равен отношению высоты, на которую подняли один край жерди, к углу, который жердь образовала с поверхностью.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .