Определения
Существует множество эквивалентных определений:
- многоугольник является выпуклым, если часть плоскости, им ограниченная (плоский многоугольник) является выпуклым множеством;
- многоугольник будет выпуклым, если для любых двух точек внутри него соединяющий их отрезок полностью лежит в нём;
- многоугольник, для которого продолжения сторон не пересекают других его сторон;
- многоугольник без самопересечений, каждый внутренний угол которого не более 180°;
- многоугольник, все диагонали которого полностью лежат внутри него;
- выпуклая оболочка конечного числа точек на плоскости;
- ограниченное множество, являющееся пересечением конечного числа замкнутых полуплоскостей.
Площадь выпуклого многоугольника
- Пусть
последовательность координат соседних друг другу вершин
-угольника без самопересечений. Тогда его площадь вычисляется по формуле:
, где
.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .