Мера Жордана инвариантна относительно движений евклидова пространства.
Множество измеримо по Жордану, если для любого существует пара многогранников и таких, что
и .
Ограниченное множество измеримо по Жордану тогда и только тогда, когда его граница имеет нулевую меру Жордана (или, что равносильно, когда его граница имеет нулевую меру Лебега). В частности, все множества, граница которых состоит из конечного числа гладких кривых и точек, измеримы по Жордану. Тем не менее существуют множества, ограниченные простой замкнутой кривой Жордана, которые не измеримы по Жордану.
Внешняя мера Жордана одна и та же для и (замыкания множества ) и равна мере Бореля.
История
Приведённое понятие меры ввели Пеано (1887) и Жордан (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.
Пример множества, неизмеримого по Жордану
Рассмотрим меру Жордана , определённую на . Пусть — множество точек единичного отрезка., — подмножество рациональных точек множества , тогда — неизмеримое по Жордану множество, так как , то есть верхняя и нижняя мера Жордана не совпадают.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии