WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Списки интегралов
Элементарные функции

Рациональные функции
Иррациональные функции
Тригонометрические функции
Гиперболические функции
Экспоненциальные функции
Логарифмические функции
Обратные тригонометрические функции
Обратные гиперболические функции

Интегрирование — это одна из двух основных операций в математическом анализе. В отличие от операции дифференцирования, интеграл от элементарной функции может не быть элементарной функцией. Например, из теоремы Лиувилля следует, что интеграл от не является элементарной функцией. Таблицы известных первообразных оказываются часто очень полезны, хотя сейчас и теряют свою актуальность с появлением систем компьютерной алгебры. На этой странице представлен список наиболее часто встречающихся первообразных.

использована как произвольная константа интегрирования, которую можно определить, если известно значение интеграла в какой-нибудь точке. У каждой функции имеется бесконечное число первообразных.

Правила интегрирования функций

Интегралы элементарных функций

Рациональные функции

(первообразная от нуля есть константа, в любых пределах интегрирования интеграл от нуля равен нулю)
(«высокий логарифм»)

Логарифмы

Экспоненциальные функции

Иррациональные функции

(«длинный логарифм»)

Тригонометрические функции

Гиперболические функции

также
также

Специальные функции

Примечания

  1. Виноградова И. А., Олехник С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. В 2 кн. Кн. 1 / Под ред. В.А. Садовничего. — 2-е изд. М.: Высшая школа, 2000. — С. 187. ISBN 5-06-003768-1.

Библиография

Книги
Таблицы интегралов
Вычисление интегралов

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии