WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Уравне́ния Э́йлера — Лагра́нжа (в физике также уравнения Лагранжа — Эйлера или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации, и, совместно с принципом стационарности действия, используются для вычисления траекторий в механике. В теоретической физике вообще это (классические) уравнения движения в контексте получения их из написанного явно выражения для действия (лагранжиана).

Использование уравнений Эйлера — Лагранжа для нахождения экстремума функционала в некотором смысле аналогично использованию теоремы дифференциального исчисления, утверждающей, что лишь в точке, где первая производная функции обращается в ноль, гладкая функция может иметь экстремум (в случае векторного аргумента приравнивается нулю градиент функции, то есть производная по векторному аргументу). Точнее говоря, это прямое обобщение соответствующей формулы на случай функционалов — функций бесконечномерного аргумента.

Уравнения были получены Леонардом Эйлером и Жозефом-Луи Лагранжем в 1750-х годах.

Утверждение

Пусть задан функционал

с подынтегральной функцией , обладающей непрерывными первыми частными производными и называемой функцией Лагранжа или лагранжианом, где через обозначена первая производная по . Если этот функционал достигает экстремума на некоторой функции , то для неё должно выполняться обыкновенное дифференциальное уравнение

которое называется уравнением Эйлера — Лагранжа.

Примеры

Рассмотрим стандартный пример: найти кратчайший путь между двумя точками плоскости. Ответом, очевидно, является отрезок, соединяющий эти точки. Попробуем получить его с помощью уравнения Эйлера — Лагранжа. Пусть точки, которые надо соединить, имеют координаты и . Тогда длина пути , соединяющего эти точки, может быть записана следующим образом:

Уравнение Эйлера — Лагранжа для этого функционала принимает вид:

откуда получаем, что

Таким образом, получаем прямую линию. Учитывая, что , , т. е. что она проходит через исходные точки, получаем верный ответ: отрезок, соединяющий точки.

Многомерные вариации

Существует также множество многомерных вариантов уравнений Эйлера — Лагранжа.

  • Если  — путь в -мерном пространстве, то он доставляет экстремум функционалу

только если удовлетворяет условию

В физических приложениях когда является лагранжианом (имеется в виду лагранжиан некоторой физической системы; то есть если J — действие для этой системы), эти уравнения — суть (классические) уравнения движения такой системы. Это утверждение может быть прямо обобщено и на случай бесконечномерного q.

  • Другое многомерное обобщение получается при рассмотрении функции переменных. Если  — какая-либо, в данном случае n-мерная, поверхность, то

где  — независимые координаты, , ,

доставляет экстремум если только удовлетворяет уравнению в частных производных

Если и  — функционал энергии, то эта задача называется «минимизацией поверхности мыльной плёнки».

  • Очевидная комбинация двух описанных выше случаев используется для получения уравнений движения распределенных систем, таких как физические поля, колеблющиеся струны или мембраны и т.п.

В частности, вместо статического уравнения равновесия мыльной пленки, приведенного в качестве примера в предыдущем пункте, имеем в этом случае динамическое уравнение движения такой пленки (если, конечно, нам удалось изначально записать для неё действие, то есть кинетическую и потенциальную энергию).

История

Уравнение Эйлера — Лагранжа было получено в 1750-х годах Эйлером и Лагранжем при решении задачи об изохроне. Это проблема определения кривой, по которой тяжёлая частица попадает в фиксированную точку за фиксированное время, независимо от начальной точки.

Лагранж решил эту задачу в 1755 году и отослал решение Эйлеру. Развитый впоследствии метод Лагранжа и применение его в механике привело к формулировке лагранжевой механики. Переписка учёных привела к созданию вариационного исчисления (термин придумал Эйлер в 1766 году).

Доказательство

Вывод одномерного уравнения Эйлера — Лагранжа является одним из классических доказательств в математике. Оно основывается на основной лемме вариационного исчисления.

Мы хотим найти такую функцию , которая удовлетворяет граничным условиям , и доставляет экстремум функционалу

Предположим, что имеет непрерывные первые производные. Достаточно и более слабых условий, но доказательство для общего случая более сложно.

Если даёт экстремум функционалу и удовлетворяет граничным условиям, то любое слабое возмущение , которое сохраняет граничные условия, должно увеличивать значение (если минимизирует его) или уменьшать (если максимизирует).

Пусть  — любая дифференцируемая функция, удовлетворяющая условию . Определим

где - произвольный параметр.

Поскольку даёт экстремум для , то , то есть

Интегрируя по частям второе слагаемое, находим, что

Используя граничные условия на , получим

Отсюда, так как  — любая, следует уравнение Эйлера — Лагранжа:

Если не вводить граничные условия на , то также требуются условия трансверсальности:

Обобщение на случай с высшими производными

Лагранжиан может также зависеть и от производных порядка выше, чем первый.

Пусть функционал, экстремум которого нужно найти, задан в виде:

Если наложить граничные условия на и на её производные до порядка включительно, а также предположить, что имеет непрерывные первые производные, то можно, применяя интегрирование по частям несколько раз, вывести аналог уравнения Эйлера-Лагранжа и для этого случая:

Это уравнение часто называют уравнением Эйлера — Пуассона.

Два лагранжиана, отличающеся на полную производную, дадут одни и те же дифференциальные уравнения, однако максимальный порядок производных в этих лагранжианах может быть различный. Например, . Чтобы получить дифференциальное уравнение на экстремум, к достаточно применить «обычное» уравнение Эйлера — Лагранжа, а для , поскольку он зависит от второй производной, нужно использовать уравнение Эйлера — Пуассона с соответствующим слагаемым:

и в обоих случаях получится одно и то же дифференциальное уравнение .

Необходимое и достаточное условие существования и единственности уравнения Эйлера-Лагранжа

Необходимым и достаточным условием существования и единственности уравнения Эйлера-Лагранжа является . Здесь - лагранжиан, - производная - ой обобщенной координаты по времени[1].

См. также

Примечания

  1. Айзерман М. А. Классическая механика. - М., Наука, 1980. - с. 165

Литература

  • Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управление. — М.: Наука, 1979
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы и приложения. — М.: Наука, 1979
  • Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. — М.: Наука, 1969.
  • Зеликин М. И. Однородные пространства и уравнение Риккати в вариационном исчислении, — Факториал, Москва, 1998.
  • Зеликин М. И. Оптимальное управление и вариационное исчисление, — УРСС, Москва, 2004.

Ссылки

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии