WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Красный четырёхугольник — параллелограмм

Теоре́ма Вариньо́на — геометрический факт, доказанный Пьером Вариньоном и утверждающий, что середины сторон произвольного четырёхугольника являются вершинами параллелограмма. Точнее

Четырёхугольник, вершины которого совпадают с серединами сторон произвольного четырёхугольника, является параллелограммом, стороны которого параллельны диагоналям исходного четырёхугольника.

Параллелограмм, образованный серединами сторон, иногда называется вариньоновским или вариньоновым.

Следствия

  • Центр параллелограмма Вариньона лежит на середине отрезка, соединяющего середины сторон исходного четырёхугольника (в этой же точке пересекаются отрезки, соединяющие середины противоположных сторон — диагонали вариньоновского параллелограмма).
  • Периметр параллелограмма Вариньона равен сумме диагоналей исходного четырёхугольника.
  • Площадь параллелограмма Вариньона равна половине площади исходного четырёхугольника.
  • Для прямоугольника и равнобедренной трапеции параллелограммом Вариньона является ромб, а для ромба — прямоугольник.
  • Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны 2) бимедианы перпендикулярны.
  • Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: 1) диагонали перпендикулярны; 2) бимедианы равны.
  • Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны и перпендикулярны; 2) бимедианы равны и перпендикулярны.
выпуклый четырёхугольник невыпуклый четырёхугольник самопересекающийся четырёхугольник

Другие следствия теоремы Вариньона

Точки E, K, F лежат на одной прямой, прямой Ньютона
  • Теоремы о средних линиях четырёхугольника

Пусть G, H, I, J — середины сторон выпуклого четырёхугольника ABCD, а E, F — середины его диагоналей. Назовем три отрезка GH, IJ, EF соответственно первой, второй и третьей средними линиями четырёхугольника.

  • Теорема Вариньона (геометрия)[1]:
    • Четырёхугольники GIHJ, EHFG, JEIF являются параллелограммами и называются параллелограммами Вариньона. Первый из них назовем большим параллелограммом Вариньона
    • Центры всех трех параллелограммов Вариньона лежат на середине отрезка, соединяющего середины сторон исходного четырёхугольника (в этой же точке пересекаются отрезки, соединяющие середины противоположных сторон — диагонали вариньоновского параллелограмма).
    • Периметр большого параллелограмма Вариньона равен сумме диагоналей исходного четырёхугольника .
    • Площадь большого параллелограмма Вариньона равна половине площади исходного четырёхугольника , то есть
.
    • Площадь исходного четырёхугольника равна произведению первой и второй средних линий четырёхугольника на синус угла между ними, то есть
.
    • Обобщенная теорема Ньютона. Средние линии четырёхугольника и отрезок, соединяющий середины диагоналей этого четырехугольника, пересекаются в одной точке и делятся ею пополам.
    • Сумма квадратов средних линий четырёхугольника и отрезка, соединяющего середины диагоналей этого четырехугольника, равна четверти суммы квадратов всех его сторон и диагоналей:
.
    • Если исходный четырехугольник — параллелограмм, то его третья средняя линия вырождается в точку (в точку пересечения его диагоналей), а первая и вторая его средние линии пересекаются в точке пересечения его диагоналей. В этой точке две его диагонали и две его средние линии делятся пополам.

См. также

Примечания

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2025
WikiSort.ru - проект по пересортировке и дополнению контента Википедии