Множество правильных n-угольных осоэдров | |||
---|---|---|---|
![]() Пример шестиугольного осоэдра на сфере | |||
Тип | Регулярный многогранник[en] или сферическая мозаика | ||
Комбинаторика | |||
Элементы |
|
||
Грани | n двуугольников | ||
Конфигурация вершины | 2n | ||
Двойственный многогранник | диэдр | ||
Классификация | |||
Символ Шлефли | {2,n} | ||
Символ Витхоффа[en] | n | 2 2 | ||
Диаграмма Дынкина |
![]() ![]() ![]() ![]() ![]() |
||
Группа симметрии | Dnh, [2,n], (*22n), порядок 4n | ||
![]() |
В геометрии n-угольный осоэдр — это такая мозаика из двуугольников на сферической поверхности, что каждый такой двуугольник имеет две общие вершины (противоположные точки сферы) с другими двуугольниками.
Правильный n-угольный осоэдр имеет символ Шлефли {2, n}, а каждый двуугольник имеет внутренний угол 2π/n радиан (360/n градусов[1][2].
Для правильных многогранников, символ Шлефли которых равен {m, n}, число многоугольных граней можно найти по формуле:
Правильные многогранники, известные с античных времён, являются единственными многогранниками, дающими в результате деления целое число для m ≥ 3 и n ≥ 3. Ограничение m ≥ 3 приводит к тому, что многоугольные грани должны иметь по меньшей мере три стороны.
Если рассматривать многогранники как сферическую мозаику, это ограничение может быть ослаблено, поскольку двуугольники можно рассматривать как сферические двуугольные фигуры, имеющие ненулевую площадь. Допущение m = 2 порождает новый бесконечный класс правильных многогранников, то есть осоэдров.
![]() Правильный треугольный осоэдр, {2,3}, представленный в виде мозаики из трёх двуугольников на сфере. |
![]() Правильный четырёхугольный осоэдр, представленный в виде мозаики из четырёх двуугольников на сфере. |
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ... |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Рисунок | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() | |
Шлефли | {2,2} | {2,3} | {2,4} | {2,5} | {2,6} | {2,7} | {2,8} | {2,9} | {2,10} | {2,11} | {2,12} | |
Коксетер | ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() | |
Граней и рёбер |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Вершин | 2 |
Двуугольные грани 2n-осоэдра , {2,2n}, представляют фундаментальные области диэдральной симметрии[en]: Cnv, [n], (*nn), порядок 2n. Области зеркального отражения можно показать, используя поочерёдную раскраску двуугольников. Рассечения двуугольников на два сферических треугольника создают бипирамиды и определяют диэдрическую симметрию Dnh, порядок 4n.
Симметрия | C1v | C2v | C3v | C4v | C5v | C6v |
---|---|---|---|---|---|---|
Осоэдр | {2,2} | {2,4} | {2,6} | {2,8} | {2,10} | {2,12} |
Фундаментальные области | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Треугольный осоэдр топологически эквивалентен бицилиндру[en], пересечению двух цилиндров под прямым углом[3].
Двойственным многогранником n-угольного осоэдра {2, n} является n-угольный диэдр, {n, 2}. Многогранник {2,2} самодвойственен и является осоэдром и диэдром одновременно.
Осоэдр можно модифицировать тем же способом, что и другие многогранники, порождая усечённые[en] варианты. Усечённый n-угольный осоэдр — это n-угольная призма.
В пределе осоэдр становится бесконечноугольным и представляет собой двумерное замощение:
Многомерные аналоги, в общем случае, называются осотопами. Правильный осототоп с символом Шлефли {2,p,…,q} имеет две вершины и в обеих вершинах вершинной фигурой служит {p,…,q}.
Двумерный осотоп (многоугольник) {2} — это двуугольник.
Термин «осоэдр» (hosohedron) предложен Г. С. М. Коксетером и, возможно, происходит от греческого ὅσος (осос) «сколь угодно», что указывает на возможность осоэдра иметь «сколь угодно много граней»[4].
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .