WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Эйлерова характеристика или характеристика Эйлера — Пуанкаре — целочисленная характеристика топологического пространства. Эйлерова характеристика пространства обычно обозначается .

Определения

где обозначает число клеток размерности .
Это определение имеет смысл только если все числа Бетти конечны и обнуляются для всех достаточно больших индексов.
  • Последнее определение обобщает предыдущее и обобщается на другие гомологии с произвольными коэффициентами.

Свойства

  • Эйлерова характеристика является гомотопическим инвариантом; то есть сохраняется при гомотопической эквивалентности топологических пространств.
    • В частности, эйлерова характеристика есть топологический инвариант.
  • Эйлерова характеристика любого замкнутого многообразия нечётной размерности равна нулю[1].
  • Эйлерова характеристика произведения топологических пространств M и N равно произведению их эйлеровых характеристик:

Эйлерова характеристика полиэдров

  • Эйлерова характеристика двумерных топологических полиэдров может быть посчитана по формуле: где Г, Р и В суть числа граней, рёбер и вершин соответственно. В частности, для односвязного многогранника верна формула Эйлера:
Например, Эйлерова характеристика для куба равна 6 − 12 + 8 = 2, а для треугольной пирамиды 4 − 6 + 4 = 2.

Формула Гаусса — Бонне

Для компактного двумерного ориентированного риманова многообразия (поверхности) без границы существует формула Гаусса — Бонне, связывающая эйлерову характеристику с гауссовой кривизной многообразия:

где  — элемент площади поверхности .

  • Существует обобщение формулы Гаусса — Бонне для двумерного многообразия с краем.
  • Существует обобщение формулы Гаусса — Бонне на чётномерное риманово многообразие, известная, как теорема Гаусса — Бонне — Черна или обобщённая формула Гаусса — Бонне.
  • Существует также дискретный аналог теоремы Гаусса — Бонне, гласящий, что Эйлерова характеристика равна сумме дефектов полиэдра, делённой на [2].
  • Существует комбинаторные аналоги формулы Гаусса — Бонне.

Ориентируемые и неориентируемые поверхности

Эйлерова характеристика замкнутой ориентируемой поверхности связана с её родом g (числом ручек, то есть числом торов в связной сумме, представляющей эту поверхность) соотношением

Эйлерова характеристика замкнутой неориентируемой поверхности связана с её неориентируемым родом k (числом проективных плоскостей в связной сумме, представляющей эту поверхность) соотношением

Величина эйлеровой характеристики

Название Вид Эйлерова характеристика
Отрезок 1
Окружность 0
Круг 1
сфера 2
Тор
(произведение двух окружностей)
0
Двойной тор −2
Тройной тор −4
Вещественная
проективная плоскость
1
Лист Мёбиуса 0
Бутылка Клейна 0
Две сферы (несвязные) 2 + 2 = 4
Три сферы 2 + 2 + 2 = 6

История

В 1752 году Эйлер[3] опубликовал формулу, связывающую между собой количество граней трёхмерного многогранника. В оригинальной работе формула приводится в виде

где S — количество вершин, H — количество граней, A — количество рёбер.

Ранее эта формула встречается в рукописях Рене Декарта, опубликованных в XVIII в.

В 1812 году Симон Люилье распространил эту формулу на многогранники с «дырками» (например, на тела наподобие рамы картины). В работе Люилье в правую часть формулы Эйлера добавлено слагаемое где — количество дырок («род поверхности»). Проверка для картинной рамы: 16 граней, 16 вершин, 32 ребра, 1 дырка:

В 1899 году Пуанкаре[4] обобщил эту формулу на случай N-мерного многогранника:

где — количество i-мерных граней N-мерного многогранника.

Если считать сам многогранник своей собственной единственной гранью размерности N, формулу можно записать в более простом виде:

Вариации и обобщения

Примечания

  1. Richeson 2008, p. 261
  2. Practical Polygonal Mesh Modeling with Discrete Gaussian-Bonnet Theorem
  3. L. Euler Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita. Novi Commentarii Academiae Scientiarum Petropolitanae 4:140–160, 1758. Представлено Санкт-Петербургской Академии 6 апреля 1752 года. Opera Omnia 1(26): 94–108.
  4. H. Poincaré, Sur la généralisation d'un théorème d'Euler relatif aux polyèdres, Compt. Rend. Acad. Sci., 117 (1893), 144-145; Oeuvres, Vol. XI, 6-7.

Литература

См. также

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии