Графики нормированной и ненормированной функций sinc(x) в диапазоне −7π ≤ x ≤ 7π.
sinc (от лат.sinus cardinalis — «кардина́льный си́нус») — математическая функция. Обозначается sinc(x). Имеет два определения — соответственно, для нормированной и ненормированной функции sinc:
В математикененормированная функция sinc определяется как
В обоих случаях значение функции в особой точке x = 0 явным образом задаётся равным единице (см. Замечательные пределы). Таким образом, функция sincаналитична для любого значения аргумента.
Свойства
Нормированная функция sinc обладает следующими свойствами:
Локальные максимум и минимум ненормированной функции sinc совпадают со значениями косинуса, то есть там, где производная равна нулю (локальный экстремум в точке ), выполняется условие .
Ненормированная функция sinc обращается в ноль при значениях аргумента, кратных π, а нормированная функция sinc — при целых значениях аргумента.
где прямоугольная функция — функция, принимающая значение1 для любого аргумента из интервала между −½и½, и равная нулю при любом другом значении аргумента.
Часто используется квадрат sinc-функции, дающий интенсивность или мощность сигнала, амплитуда которого описывается sinc-функцией.
Так как значения быстро уменьшаются с ростом агрумента, квадрат sinc-функции часто представляют в логарифмическом масштабе.
Обработка сигналов
sinc-фильтр — идеальный электронный фильтр, который подавляет все частоты в спектре сигнала выше некоторой частоты среза, оставляя все частоты ниже этой частоты неизменными. В частотной области (АЧХ) представляет собой прямоугольную функцию, а во временно́й области (импульсная характеристика) — sinc-функцию.
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии