WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.

Алгебра называется ассоциативной, если операция умножения в ней ассоциативна; соответственно, алгебра с единицей — алгебра, в которой существует нейтральный относительно умножения элемент. В некоторых учебниках под словом «алгебра» подразумевается «ассоциативная алгебра», однако неассоциативные алгебры также представляют определённую важность.

Определение

Пусть  — векторное пространство над полем , снабженное операцией , называемой умножением. Тогда является алгеброй над , если для любых выполняются следующие свойства:

  • .

Эти три свойства можно выразить одним словом, сказав, что операция умножения является билинейной. В случае алгебр с единицей часто дают следующее эквивалентное определение:

Алгебра с единицей над полем  — это кольцо с единицей , снабженное гомоморфизмом колец с единицей , таким, что принадлежит центру кольца (то есть множеству элементов, коммутирующих по умножению со всеми остальными элементами). После этого можно считать, что является векторным пространством над со следующей операцией умножения на скаляр : .

Связанные определения

  • Гомоморфизм -алгебр — это -линейное отображение, такое что для любых из области определения.
  • Подалгебра алгебры над полем  — это линейное подпространство, такое что произведение любых двух элементов из этого подпространства снова ему принадлежит. Другими словами, подалгеброй линейной алгебры над полем называется её подмножество если оно является подкольцом кольца и подпространством линейного пространства [1].
    • Элемент алгебры называется алгебраическим, если он содержится в конечномерной подалгебре.
    • Алгебра называется алгебраической если все её элементы алгебраические.[2]
  • Левый идеал -алгебры — это линейное подпространство, замкнутое относительно умножения слева на произвольный элемент кольца. Соответственно, правый идеал замкнут относительно правого умножения; двусторонний идеал — идеал, являющийся левым и правым. Единственное отличие этого определения от определения идеала кольца — это требование замкнутости относительно умножения на элементы поля, в случае алгебр с единицей это требование выполняется автоматически.
  • Алгебра с делением — это алгебра над полем, такая что для любых её элементов и уравнения и разрешимы[3]. В частности, ассоциативная алгебра с делением, имеющая единицу, является телом.
  • Центр алгебры  — это множество элементов , таких что для любого элемента .

Примеры

Ассоциативные алгебры

Неассоциативные алгебры

Структурные коэффициенты

Умножение в алгебре над полем однозначно задаётся произведениями базисных векторов. Таким образом, для задания алгебры над полем достаточно указать её размерность и структурных коэффициентов , являющихся элементами поля. Эти коэффициенты определяются следующим образом:

где  — некоторый базис . Различные множества структурных коэффициентов могут соответствовать изоморфным алгебрам.

Если  — только коммутативное кольцо, а не поле, это описание возможно, только когда алгебра является свободным модулем.

См. также

Примечания

  1. Скорняков Л. А. Элементы алгебры. - М., Наука, 1986. - с. 190
  2. Джекобсон Н. Строение колец. М.: ИЛ, 1961. — 392 с.
  3. Кузьмин Е. Н. Алгебра с делением

Литература

  • Скорняков Л. А., Шестаков И. П.  Глава III. Кольца и модули // Общая алгебра / Под общ. ред. Л. А. Скорнякова. М.: Наука, 1990. — Т. 1. — С. 291—572. — 592 с. — (Справочная математическая библиотека). 30 000 экз. ISBN 5-02-014426-6.

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии