Двустороннее преобразование Лапласа — интегральное преобразование, тесно связанное с преобразованием Фурье, преобразованием Меллина, а также с обычным и односторонним преобразованием Лапласа.
Если является вещественной или комплексной функцией действительной переменной , то двустороннее преобразование Лапласа задаётся формулой
Интеграл в этом определении подразумевается несобственным и сходящимся тогда, когда существуют
Иногда двусторонние преобразования записывают в виде
Вообще, переменная может быть как вещественной, так и комплексной величиной.
Временная область | Односторонняя область | Двусторонняя область | |
---|---|---|---|
Первая производная | |||
Вторая производная |
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .