WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте

Двустороннее преобразование Лапласа — интегральное преобразование, тесно связанное с преобразованием Фурье, преобразованием Меллина, а также с обычным и односторонним преобразованием Лапласа.

Определение

Если является вещественной или комплексной функцией действительной переменной , то двустороннее преобразование Лапласа задаётся формулой

Интеграл в этом определении подразумевается несобственным и сходящимся тогда, когда существуют

Иногда двусторонние преобразования записывают в виде

Вообще, переменная может быть как вещественной, так и комплексной величиной.

Связь с другими интегральными преобразованиями

И обратно: из двустороннего преобразования можно получить обычное по формуле
И обратно: из двустороннего преобразования можно получить преобразование Меллина по формуле
  • Преобразование Фурье может быть определено через двустороннее преобразование Лапласа формулой

Свойства

Свойства преобразований Лапласа
Временная область Односторонняя область Двусторонняя область
Первая производная
Вторая производная

Литература

  • LePage, Wilbur R., Complex Variables and the Laplace Transform for Engineers, Dover Publications, 1980
  • van der Pol, Balthasar, and Bremmer, H., Operational Calculus Based on the Two-Sided Laplace Integral, Chelsea Pub. Co., 3rd edition, 1987

Примечания

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии