WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Семиугольная мозаика
ТипГиперболическая
правильная мозаика
[en]
Вершинная фигура73
Символ Шлефли{7,3}
Символ Витхоффа[en]7 2
Диаграмма Коксетера
Группа симметрии[7,3], (*732)
Двойственный
многогранник
Треугольная мозаика
порядка 7
[en]
СвойстваВершинно транзитивна,
рёберно транзитивна[en],
транзитивна по граням[en]

В геометрии семиугольная мозаика — это правильная мозаика на гиперболической плоскости. Она представляется cимволом Шлефли {7,3} и имеет три правильных семиугольника в каждой вершине.

Иллюстрации


Модель полуплоскости Пуанкаре

Дисковая модель Пуанкаре

Модель Клейна

Связанные многогранники и мозаики

Эта мозаика имеет топологическую связь с правильными многогранниками как член последовательности правильных многогранников с cимволом Шлефли {n,3}.

*n32 варианты симметрии правильных мозаик: n3 или {n',3}
Сферические Евклидовы Компактные
гиперболические.
Параком-
пактные.
Некомпактные гиперболические.
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}

Из построения Витхоффа следует, что существует восемь гиперболических однородных мозаик[en], базирующихся на правильной семиугольной мозаике.

Если раскрасить в мозаике красным исходные грани, жёлтым исходные вершины, а синим исходные рёбра, имеется 8 форм.

Поверхности Гурвица

Группа симметрии семиугольной мозаики имеет в качестве фундаментальной области (2,3,7) треугольник Шварца, который образует эту мозаику.

Группа симметрии мозаики является группой треугольника (2,3,7), и фундаментальной областью для этого действия является треугольник Шварца (2,3,7). Это наименьший гиперболический треугольник Шварца, а потому, по теореме Гурвица об автоморфизмах, мозаика является универсальной мозаикой, покрывающей все поверхности Гурвица (римановы поверхности с максимальной группой симметрии), давая мозаику семиугольниками, группа симметрии которой равна группе симметрии римановой поверхности. Наименьшей поверхностью Гурвица является квартика Клейна[en] (род 3, группа автоморфизма имеет порядок 168) и порождённая мозаика имеет 24 семиугольника, имеющие общие 56 вершин.

Двойственная треугольная мозаика порядка 7[en] имеет ту же самую группу симметрии и она задаёт триангуляции[en] поверхности Гурвица.

См. также

Примечания

    Литература

    Ссылки

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии