Ромбическая мозаика | |
---|---|
![]() | |
Тип | мозаика Лавеса[en] |
Диаграмма Коксетера | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Грани | ромбы 60°–120° |
Конфигурация граней | V3.6.3.6![]() |
Группа симметрии | p6m, [6,3], *632 p3m1, [3[3]], *333 |
Группа вращения | p6, [6,3]+, (632) p3, [3[3]]+, (333) |
Двойственная | Тригексагональная мозаика[en] |
Свойства | рёберно транзитивная грань-транзитивная[en] |
В геометрии ромбическая мозаика[1], кантующиеся блоки[2], обратимые кубы или кубическая решётка — это мозаика одинаковых ромбов с углом 60° на евклидовой плоскости. Каждый ромб имеет два угла 60° и два 120°. Такие ромбы иногда называют диамондами. Множества из трёх ромбов соприкасаются вершинами с углом 120°, а множества из шести — вершинами с углом 60°.
Ромбическую мозаику можно рассматривать как разделённую шестиугольную мозаику, в которой каждый шестиугольник разделён на три ромба, имеющих общую вершину в центре шестиугольника. Такое деление представляет правильную соединённую мозаику. Её можно рассматривать также как разделение четырёх шестиугольных мозаик, в которых шестиугольники разделены на 12 ромбов.
Диагонали ромба относятся как 1:√3. Ромбическая мозаика является двойственной тригексагональной мозаике[en] или решётке кагоме. Как двойственная мозаика однородной мозаики она является одной из одиннадцати возможных мозаик Лавеса[en], и её вершинная конфигурация[en]* обозначается как [3.6.3.6][4].
Мозаика является также одним из 56 возможных изоэдральных замощений[en] четырёхугольниками[5] и одной из восьми замощений плоскости, в которой любое ребро лежит на оси симметрии мозаики[6].
Можно вложить ромбическую мозаику в подмножество трёхмерной целочисленной решётки таким образом, что две вершины смежны тогда и только тогда, когда соответствующие точки решётки находятся на единичном расстоянии друг от друга. Более строго, когда число рёбер в кратчайшем пути между двумя вершинами мозаики равно расстоянию городских кварталов между соответствующих точек решётки. Таким образом, ромбическую мозаику можно рассматривать как пример бесконечного графа единичных расстояний и частичного куба[7].
Ромбическую мозаику можно интерпретировать как изометрическую проекцию множества кубов двумя различными путями, которые представляют обратимые фигуры[en], связанные с кубом Некера[en]. Это явление известно как иллюзия «обратимых кубов»[8].
В ксилографиях Метаморфозы I[en], Метаморфозы II[en] и Метаморфозы III[en] Эшер использует эту интерпретацию мозаики как путь преобразования из двумерных в трёхмерные формы[9]. В другой его работе, Цикл (1938) , Эшер играет со внутренним противоречием между двумерностью и трёхмерностью этой мозаики — на рисунке нарисованы здания, которые имеют большие кубические блоки в качестве архитектурных элементов и внутренний дворик наверху, замощённый ромбической мозаикой. Человеческие фигурки, спускающиеся из дворика вниз по кубам, становятся стилизованными и плоскими[10]. Эти работы используют только одну трёхмерную интерпретацию мозаики, но в картине Выпуклый и вогнутый[en] Эшер экспериментирует с обратимыми фигурами и включает изображение обратимых кубов на флаге[11].
Ромбическая мозаика используется также для паркета[12] и как плитка для пола или стен, иногда с изменением формы ромбов[13] Ромбический рисунок обнаруживается на древнем мозаичном полу в греческом Дилосе[14] и на итальянском полу 11-го столетия[15], хотя плитка в мозаике Сиенского собора более позднего производства[16]. Стёганый материал[en], известен с 1850-х годов как узор "кувыркающихся блоков ", что выражает визуальный диссонанс, вызванный двоякой трёхмерной интерпретацией[2][15][17]. Этот узор имеет много других названий, например, небесная лестница и ящик Пандоры[17]. Считается, что этот узор использовался в качестве сигнала на подпольной железной дороге — когда рабы видели его повешенным на ограде, они собирали свои пожитки и скрывались[18]. В этих декоративных узорах могут использоваться ромбы различных цветов, но обычно используются три оттенка, более светлые ромбы с горизонтальными длинными диагоналями и более тёмные в других двух направлениях, что усиливает их эффект трёхмерности. Существует одно известное присутствие ромбической и тригексагональной мозаик[en] в английской геральдике[en] — на гербе армии Geal/e[19].
Ромбическая мозаика иногда осуществляется с меньшей степенью симметрии. Например, следующие два варианта. Иногда эти варианты называются кубической мозаикой за иллюзию трёхмерных сложенных кубиков, видимых под углом.
![]() |
![]() |
Ромбическую мозаику можно рассматривать как результат наложения двух различных шестиугольных мозаик, сдвинутых так, что вершины одной мозаики оказываются в центре шестиугольников другой мозаики. В таком виде ромбическая мозаика может быть использована для создания блочного клеточного автомата, в котором ячейками автомата являются ромбы мозаики, а блоками в чередующихся шагах автомата служат шестиугольники двух мозаик. В этом контексте автомат называется «полем Q*bert», по названию видеоигры Q*bert, в которой игровое поле выглядит как пирамида из кубов. Поле Q*bert можно использовать для поддержки универсальной системы путём имитации бильярдного компьютера[20].
В физике конденсированного состояния ромбическая мозаика известна как кубическая решётка или двойственная решётка кагоме. Она является одной из нескольких повторяющихся структур, использовавшихся для изучения модели Изинга и связанных систем взаимодействия спинов в двухатомных кристаллах[21], а также изучалась в теории перколяции[22].
Ромбическая мозаика имеет *632 симметрий, но вершины можно выкрасить в чередующиеся цвета, что приводит к *333 симметриям.
Рисунок | ![]() (2 colors) |
![]() (3 colors) |
---|---|---|
Симметрия | p6m, [6,3], (*632) | p3m1, [3[3]], (*333) |
Коксетер | ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ромбическая мозаика является двойственной тригексагональной мозаике[en], а потому принадлежит множеству мозаик, однородных двойственным. Она является также частью последовательности ромбических многогранников и мозаик с группой симметрий Коксетера [n,3], которая начинается с куба, который можно рассматривать как ромбический шестигранник, а ромбами в нём служат квадраты. n-ый элемент этой последовательности имеет конфигурацию граней[en] V3.n.3.n.
Сферические | Евклидовы | Гиперболические | |||||
---|---|---|---|---|---|---|---|
*n32 | *332 | *432 | *532 | *632 | *732 | *832... | *∞32 |
Мозаика | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Конф. | V(3.3)2 | V(3.4)2 | V(3.5)2 | V(3.6)2 | V(3.7)2 | V(3.8)2 | V(3.∞)2 |
Ромбическая мозаика является одним из многих способов замощения плоскости ромбами. Другие включают
К ним примыкает и мозаика «Сфинкс», которая подобно ромбической мозаике базируется на шестиугольной мозаике.
Для улучшения этой статьи желательно: |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .