Производная Ли для тензорного поля в неголономном репере
Пусть тензорное поле К типа (p, q) задано в неголономном репере
, тогда его производная Ли вдоль векторного поля Х задаётся следующей формулой:
,
где
, и введены следующие обозначения:
,
— объект неголономности.
Свойства
-линейно по
и по
. Здесь
— произвольное тензорное поле.
- Производная Ли — дифференцирование на кольце тензорных полей.
- На супералгебре внешних форм производная Ли является дифференцированием и однородным оператором степени 0.
- Пусть
и
— векторные поля на многообразии, тогда
- есть дифференцирование алгебры
, поэтому существует векторное поле
, называемое скобкой Ли векторных полей (также их скобкой Пуассона или коммутатор), для которого
- Формула гомотопии (тождество Картана):
. Здесь
— дифференциальная
-форма,
— оператор внутреннего дифференцирования форм, определяемый как
.
- Как следствие,
. Здесь
— гладкое сечение (естественного) векторного расслоения
(например, любое тензорное поле),
— поднятие векторного поля
на
,
— оператор вертикального проектирования на
. (См. далее)
Обобщения
Естественные расслоения
Пусть
— естественное гладкое расслоение, то есть функтор, действующий из категории гладких многообразий в категорию расслоений над ними:
. Произвольное векторное поле
порождает однопараметрическую группу диффеморфизмов
, продолжающуюся с помощью
на пространство расслоения
, то есть
. Производная этой группы в нуле даёт векторное поле
, являющееся продолжением
. Группа
также позволяет определить производную Ли по
от произвольных сечений
по такой же формуле, как и в классическом случае:
Отметим, что в общем случае производная Ли является элементом соответствующего вертикального расслоения
, то есть ядра отображения
, так как
. Если
— векторное расслоение, то существует канонический изоморфизм
. Оператор вертикального проектирования
позволяет представить производную Ли как сечение исходного расслоения:
Производная Ли по формам
Другое обобщение основано на исследовании супералгебры Ли дифференцирований супералгебры внешних форм. Среди всех таких дифференцирований особенно выделяются т. н. алгебраические, то есть те, которые равны 0 на функциях. Любое такое дифференцирование имеет вид
, где
— тангенциальнозначная форма, а оператор внутреннего дифференцирования
определяется по формуле
Здесь
— операция альтернирования отображения по всем переменным. Производная Ли по векторнозначной форме
определяется через суперкоммутатор операторов:
Её значение определяется тем, что любое дифференцирование
супералгебры
однозначно представимо в виде
, где
,
— некоторые векторнозначные формы. Кроме того, по формуле
можно ввести скобку Фролиха-Ниенхойса тангенциальнозначных форм.
Литература
- Ш. Кобаяси, К. Номидзу. Основы дифференциальной геометрии. — 1981. — Т. 1. — 344 с.
- Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия: Методы и приложения. — 2-е, перераб. — М.: Наука, 1986. — Т. 1. — 760 с.
- Ivan Kolář, Peter W. Michor, Jan Slovák. Natural operations in differential geometry. — 1-е изд. — Springer, 1993. — 434 с. — ISBN 978-3540562351.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .