Оператор Д’Аламбера (оператор Даламбера, волновой оператор, даламбертиан) — дифференциальный оператор второго порядка
где
— оператор Лапласа,
— постоянная.
Иногда оператор пишется с противоположным знаком.
Имеет в декартовых координатах вид:
позволяющий прямое обобщение на любую конечную размерность пространства, как больше, так и меньше трёх (такое обобщение носит также название оператора Д’Аламбера, с добавлением, если это не ясно из контекста, «
-мерный»).
Назван по имени Ж. Д’Аламбера (J. D’Alembert, 1747), который рассматривал его простейший вид при решении одномерного волнового уравнения.
Применяется в электродинамике, акустике и других задачах распространения волн (преимущественно линейных). Оператор Д’Аламбера (соответствующей размерности) входит в волновое уравнение любой размерности, составляя его основу, а также в уравнение Клейна — Гордона — Фока.
Нетрудно видеть, что оператор Д’Аламбера есть обобщение оператора Лапласа на случай пространства Минковского.
Запись в криволинейных координатах
Оператор Д’Аламбера в сферических координатах:
в цилиндрических координатах:
в общих криволинейных координатах (для пространства-времени):
где
— определитель матрицы
, составленный из коэффициентов метрического тензора
.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .