Правило произведения или тождество Лейбница — характерное свойство дифференциальных операторов.
Часто тождество Лейбница включается как аксиома при определении дифференцирования.
Для -й производной существует обобщённая формула Лейбница:
Операция на градуированной алгебре удовлетворяет градуированному тождеству Лейбница, если для любых ,
где — умножение в . Большинство дифференцирований на алгебре дифференциальных форм удовлетворяют этому тождеству.
В ассоциативной алгебре верно следующее тождество: Это тождество представляет собой правило Лейбница для оператора По этой причине оператор называют внутренним дифференцированием в алгебре. Аналогичным свойством обладает оператор
Как следствие,
![]() |
Это заготовка статьи по математике. Вы можете помочь проекту, дополнив её. |
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .