В математическом анализечастная производная — одно из обобщений понятия производной на случай функции нескольких переменных.
Частная производная — это предел отношения приращения функции по выбранной переменной к приращению этой переменной, при стремлении этого приращения к нулю.
В явном виде частная производная функции в точке определяется следующим образом:
График функции z = x² + xy + y². Частная производная в точке (1, 1, 3) при постоянном y соответствует углу наклона касательной прямой, параллельной плоскости xz.Сечения графика, изображенного выше, плоскостью y = 1
Обозначение
Следует обратить внимание, что обозначение следует понимать как цельный символ, в отличие от обычной производной функции одной переменной , которую можно представить, как отношение дифференциалов функции и аргумента. Однако, и частную производную можно представить как отношение дифференциалов, но в этом случае необходимо обязательно указывать, по какой переменной осуществляется приращение функции: , где — частный дифференциал функции по переменной . Часто непонимание факта цельности символа является причиной ошибок и недоразумений, как, например, сокращение в выражении [1].
Геометрическая интерпретация
Геометрически, частная производная даёт производную по направлению одной из координатных осей. Частная производная функции в точке по координате равна производной по направлению , где единица стоит на -м месте.
Примеры
Объём конуса зависит от высоты и радиуса основания
Частная производная объёма V относительно радиуса r
которая показывает скорость, с которой изменяется объём конуса, если его радиус меняется, а его высота остаётся неизменной. Например, если считать единицы измерения объёма , а измерения длины , то вышеуказанная производная будет иметь размерность скорости измерения объёма , т.е. изменение величины радиуса на 1 будет соответствовать изменению объёма конуса на .
Частная производная относительно h
которая показывает скорость, с которой изменяется объём конуса, если его высота меняется, а его радиус остаётся неизменным.
Полная производная V относительно r и h
и
Различие между полной и частной производной — устранение косвенных зависимостей между переменными в последней.
Если (по некоторым причинам) пропорции конуса остаются неизменными, то высота и радиус находятся в фиксированном отношении k,
Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.
2019-2025 WikiSort.ru - проект по пересортировке и дополнению контента Википедии