Ве́кторный опера́тор Лапла́са (или ве́кторный лапласиа́н) — это векторный дифференциальный оператор второго порядка, определённый над векторным полем и обозначаемый символом [1], аналогичный скалярному оператору Лапласа. Векторный оператор Лапласа действует на векторное поле и имеет векторное значение, тогда как скалярный лапласиан действует на скалярное поле и имеет скалярное значение. При вычислении в декартовых координатах, получаемое векторное поле эквивалентно векторному полю скалярного Лапласиана, действующего на отдельные компоненты исходного вектора.
Векторный оператор Лапласа векторного поля определяется следующим образом:
В декартовых координатах векторный лапласиан векторного поля можно представить в виде вектора, компонентами которого являются скалярные лапласианы компонент векторного поля :
где , , — компоненты векторного поля .
Выражения для векторного оператора Лапласа в других системах координат можно найти в статье «Оператор набла в различных системах координат».
Возможно, этот раздел содержит оригинальное исследование. |
Лапласиан любого тензорного поля (скаляры и векторы являются частными случаями тензоров) определяется как дивергенция градиента тензора:
В случае если — это скаляр (тензор нулевого порядка), оператор Лапласа принимает привычную форму.
Если — это вектор (тензор первого порядка), то его градиент это ковариантная производная, которая является тензором второго порядка, а его дивергенция — это снова вектор. Формула для векторного лапласиана может быть представлена как дивергенция выражения для градиента вектора:
где (общий вид компоненты тензора), и могут принимать значения из множества .
Аналогично, скалярное произведение вектора на градиент другого вектора (тензор второго порядка), значением которого является вектор, может быть рассмотрено как произведение матриц:
Данное выражение зависит от системы координат.
Примером использования векторного оператора Лапласа являются уравнения Навье — Стокса для идеальной несжимаемой жидкости[3]:
где слагаемое с векторным оператором Лапласа от поля скоростей представляет собой вязкость жидкости.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .