WikiSort.ru - Не сортированное

ПОИСК ПО САЙТУ | о проекте
Плосконосая тривосьмиугольная мозаика
Конформно-евклидова модель гиперболической плоскости
Типгиперболическая однородная мозаика
Конфигурация
вершины
3.3.3.3.8
Символ Шлефлиsr{8,3} или
Символ
Витхоффа
[en]
| 8 3 2
Диаграмма
Коксетера — Дынкина
, или
Симметрии вращения[8,3]+, (832)
[8,4]+, (842)
[(4,4,4)]+, (444)
Двойственная
мозаика
Цветочная пятиугольная мозаика порядка 8-3
Свойствавершинно транзитивная
хиральная

Плосконосая восьмиугольная мозаика порядка 3 — это полуправильная мозаика на гиперболической плоскости. Существует четыре треугольника и один восьмиугольник в каждой вершине. Символ Шлефли мозаики — sr{8,3}.

Иллюстрации

Представлена хиральная пара с отсутствующими рёбрами между чёрными треугольниками:

Связанные многогранники и мозаики

Эта полуправильная мозаика входит в последовательность плосконосых многогранников и мозаик с вершинной фигурой (3.3.3.3.n) и диаграммой Коксетера — Дынкина . Эти фигуры и их двойственные имеют вращательную симметрию[en] (n32). Фигуры присутствуют на евклидовой плоскости (при n=6) и на гиперболических плоскостях для бо́льших n. Можно считать последовательность начинающейся с n=2, в этом случае грани вырождаются в двуугольники.

n32 симметрии плосконосых мозаик: 3.3.3.3.n
Симметрия
n32
Сферическая Евклидоваn Компактная гиперболич. Паракомп.
232 332 432 532 632 732 832 32
Плосконосые
фигуры
Конфигурация 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Фигуры
Конфигурация V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.

Из построения Витхоффа следует, что существует десять гиперболических однородных мозаик, основывающихся на правильной восьмиугольной мозаике.

Если нарисовать мозаики с исходными красными гранями, жёлтыми вершинами и синими рёбрами, существует 10 форм.

См. также

Примечания

    Литература

    Ссылки

    Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

    Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

    Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




    Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

    Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

    2019-2025
    WikiSort.ru - проект по пересортировке и дополнению контента Википедии