В теории групп группа кватернионов — это неабелева[en]* группа восьмого порядка, изоморфная набору из восьми кватернионов с операцией умножения. Она часто обозначается буквой Q или Q8, и определяется заданием группы
где 1 — единичный элемент, а элемент −1 коммутирует с остальными элементами группы.
Группа Q8 имеет тот же порядок, что и диэдрическая группа D4[en], но имеет другую структуру, что можно видеть на графах Кэли и диаграммах циклов:
Граф Кэли | Граф циклов | ||
---|---|---|---|
![]() Q8 Красные стрелки обозначают умножение справа на i, а зелёные — умножение справа на j. |
![]() D4 Диэдрическая группа |
![]() Q8 |
![]() Dih4 |
Диэдрическая группа D4 получается из сплит-кватернионов[en] таким же образом, что и Q8 из кватернионов.
Таблица Кэли (таблица умножения) для Q[1]:
Q×Q | 1 | −1 | i | −i | j | −j | k | −k |
---|---|---|---|---|---|---|---|---|
1 | 1 | −1 | i | −i | j | −j | k | −k |
−1 | −1 | 1 | −i | i | −j | j | −k | k |
i | i | −i | −1 | 1 | k | −k | −j | j |
−i | −i | i | 1 | −1 | −k | k | j | −j |
j | j | −j | −k | k | −1 | 1 | i | −i |
−j | −j | j | k | −k | 1 | −1 | −i | i |
k | k | −k | j | −j | −i | i | −1 | 1 |
−k | −k | k | −j | j | i | −i | 1 | −1 |
Умножение шести мнимых единиц {±i, ±j, ±k} действует как векторное произведение единичных векторов в трёхмерном евклидовом пространстве.
Группа кватернионов имеет необычное свойство гамильтоновости — любая подгруппа группы Q является нормальной подгруппой, и при этом сама группа не является абелевой.[2] Любая гамильтонова группа содержит копию группы Q.[3]
Можно построить четырёхмерное векторное пространство с базисом {1, i, j, k} и превратить его в ассоциативную алгебру с использованием приведённой выше таблицы умножения базисных векторов и продолжив операцию умножения по дистрибутивности. Полученная алгебра будет телом кватернионов. Заметим, что это не то же самое, что и групповая алгебра Q (которая имеет размерность 8). Обратно, можно начать с кватернионов и определить группу кватернионов как мультипликативную подгруппу, состоящую из восьми элементов {1, −1, i, −i, j, −j, k, −k}. Комплексное четырёхмерное векторное пространство с тем же базисом называется алгеброй бикватернионов.
Заметим, что i, j и k имеют порядок 4 в Q и любые два из них порождают всю группу. Другое задание группы Q[4], показывающее это:
Можно, например, взять i = x, j = y и k = xy.
Центром и коммутантом группы Q является подгруппа {±1}. Факторгруппа Q/{±1} изоморфна четверной группе Клейна V. Группа внутренних автоморфизмов группы Q изоморфна факторгруппе Q по центру, и потому также изоморфна четверной группе Клейна. Полная группа автоморфизмов группы Q изоморфна S4, симметрической группе четырёх букв. Группой внешних автоморфизмов[en] группы Q является S4/V, которая изоморфна S3.
Группа кватернионов может быть представлена как подгруппа полной линейной группы GL2(C). Представление
определяется матрицами[5]
Поскольку все из приведённых выше матриц имеют единичные определители, они задают представление группы Q в специальной линейной группе SL2(C).
Существует также важное действие группы Q на восьми ненулевых элементах двумерного векторного пространства над конечным полем F3. Представление
определяется матрицами
где {−1,0,1} — три элемента поля F3. Поскольку определитель всех матриц над полем F3 равен единице, это является представлением группы Q в специальной линейной группе SL(2, 3). Более того, группа SL(2, 3) имеет порядок 24, а Q является нормальной подгруппой группы SL(2, 3) с индекса 3.
Как показал Ричард Дин (Richard Dean) в 1981 году, группа кватернионов может быть задана как группа Галуа Gal(T/Q), где Q является полем рациональных чисел, а T является полем разложения многочлена
над Q.
Доказательство использует основную теорему теории Галуа, а также две теоремы о циклических расширениях степени 4.[6]
Группа называется обобщённой группой кватернионов (или дициклической группой), если она имеет задание [4]
для некоторого целого n ≥ 2. Эта группа обозначается как Q4n и имеет порядок 4n.[7] Коксетер обозначил эти дициклические группы как <2,2,n>, рассматривая их как частный случай бинарной полиэдральной группы[en] <l,m,n>, связанной с полиэдральными группами[en] (p,q,r) и диэдральной группой (2,2,n). Обычная кватернионная группа соответствует случаю n = 2. Обобщённая кватернионная группа изоморфна подгруппе группы GL2(C), порождённой элементами
где ωn = eiπ/n[4]. Она также изоморфна группе, порождённой [8] кватернионами x = eiπ/n и y = j.
Теорема Брауэра — Сузуки[en] утверждает, что группы, для которых силовские 2-подгруппы являются обобщёнными кватернионами, не могут быть простыми.
Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".
Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.
Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .